File size: 11,268 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
"""
Trainer

Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""

import os
import sys
import weakref
import torch
import torch.nn as nn
import torch.utils.data
from functools import partial

if sys.version_info >= (3, 10):
    from collections.abc import Iterator
else:
    from collections import Iterator
from tensorboardX import SummaryWriter

from .defaults import create_ddp_model, worker_init_fn
from .hooks import HookBase, build_hooks
import pointcept.utils.comm as comm
from pointcept.datasets import build_dataset, point_collate_fn, collate_fn
from pointcept.models import build_model
from pointcept.utils.logger import get_root_logger
from pointcept.utils.optimizer import build_optimizer
from pointcept.utils.scheduler import build_scheduler
from pointcept.utils.events import EventStorage, ExceptionWriter
from pointcept.utils.registry import Registry


TRAINERS = Registry("trainers")


class TrainerBase:
    def __init__(self) -> None:
        self.hooks = []
        self.epoch = 0
        self.start_epoch = 0
        self.max_epoch = 0
        self.max_iter = 0
        self.comm_info = dict()
        self.data_iterator: Iterator = enumerate([])
        self.storage: EventStorage
        self.writer: SummaryWriter

    def register_hooks(self, hooks) -> None:
        hooks = build_hooks(hooks)
        for h in hooks:
            assert isinstance(h, HookBase)
            # To avoid circular reference, hooks and trainer cannot own each other.
            # This normally does not matter, but will cause memory leak if the
            # involved objects contain __del__:
            # See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/
            h.trainer = weakref.proxy(self)
        self.hooks.extend(hooks)

    def train(self):
        with EventStorage() as self.storage:
            # => before train
            self.before_train()
            for self.epoch in range(self.start_epoch, self.max_epoch):
                # => before epoch
                self.before_epoch()
                # => run_epoch
                for (
                    self.comm_info["iter"],
                    self.comm_info["input_dict"],
                ) in self.data_iterator:
                    # => before_step
                    self.before_step()
                    # => run_step
                    self.run_step()
                    # => after_step
                    self.after_step()
                # => after epoch
                self.after_epoch()
            # => after train
            self.after_train()

    def before_train(self):
        for h in self.hooks:
            h.before_train()

    def before_epoch(self):
        for h in self.hooks:
            h.before_epoch()

    def before_step(self):
        for h in self.hooks:
            h.before_step()

    def run_step(self):
        raise NotImplementedError

    def after_step(self):
        for h in self.hooks:
            h.after_step()

    def after_epoch(self):
        for h in self.hooks:
            h.after_epoch()
        self.storage.reset_histories()

    def after_train(self):
        # Sync GPU before running train hooks
        comm.synchronize()
        for h in self.hooks:
            h.after_train()
        if comm.is_main_process():
            self.writer.close()


@TRAINERS.register_module("DefaultTrainer")
class Trainer(TrainerBase):
    def __init__(self, cfg):
        super(Trainer, self).__init__()
        self.epoch = 0
        self.start_epoch = 0
        self.max_epoch = cfg.eval_epoch
        self.best_metric_value = -torch.inf
        self.logger = get_root_logger(
            log_file=os.path.join(cfg.save_path, "train.log"),
            file_mode="a" if cfg.resume else "w",
        )
        self.logger.info("=> Loading config ...")
        self.cfg = cfg
        self.logger.info(f"Save path: {cfg.save_path}")
        self.logger.info(f"Config:\n{cfg.pretty_text}")
        self.logger.info("=> Building model ...")
        self.model = self.build_model()
        self.logger.info("=> Building writer ...")
        self.writer = self.build_writer()
        self.logger.info("=> Building train dataset & dataloader ...")
        self.train_loader = self.build_train_loader()
        self.logger.info("=> Building val dataset & dataloader ...")
        self.val_loader = self.build_val_loader()
        self.logger.info("=> Building optimize, scheduler, scaler(amp) ...")
        self.optimizer = self.build_optimizer()
        self.scheduler = self.build_scheduler()
        self.scaler = self.build_scaler()
        self.logger.info("=> Building hooks ...")
        self.register_hooks(self.cfg.hooks)

    def train(self):
        with EventStorage() as self.storage, ExceptionWriter():
            # => before train
            self.before_train()
            self.logger.info(">>>>>>>>>>>>>>>> Start Training >>>>>>>>>>>>>>>>")
            for self.epoch in range(self.start_epoch, self.max_epoch):
                # => before epoch
                # TODO: optimize to iteration based
                if comm.get_world_size() > 1:
                    self.train_loader.sampler.set_epoch(self.epoch)
                self.model.train()
                self.data_iterator = enumerate(self.train_loader)
                self.before_epoch()
                # => run_epoch
                for (
                    self.comm_info["iter"],
                    self.comm_info["input_dict"],
                ) in self.data_iterator:
                    # => before_step
                    self.before_step()
                    # => run_step
                    self.run_step()
                    # => after_step
                    self.after_step()
                # => after epoch
                self.after_epoch()
            # => after train
            self.after_train()

    def run_step(self):
        input_dict = self.comm_info["input_dict"]
        for key in input_dict.keys():
            if isinstance(input_dict[key], torch.Tensor):
                input_dict[key] = input_dict[key].cuda(non_blocking=True)
        with torch.cuda.amp.autocast(enabled=self.cfg.enable_amp):
            output_dict = self.model(input_dict)
            loss = output_dict["loss"]
        self.optimizer.zero_grad()
        if self.cfg.enable_amp:
            self.scaler.scale(loss).backward()
            self.scaler.unscale_(self.optimizer)
            if self.cfg.clip_grad is not None:
                torch.nn.utils.clip_grad_norm_(
                    self.model.parameters(), self.cfg.clip_grad
                )
            self.scaler.step(self.optimizer)

            # When enable amp, optimizer.step call are skipped if the loss scaling factor is too large.
            # Fix torch warning scheduler step before optimizer step.
            scaler = self.scaler.get_scale()
            self.scaler.update()
            if scaler <= self.scaler.get_scale():
                self.scheduler.step()
        else:
            loss.backward()
            if self.cfg.clip_grad is not None:
                torch.nn.utils.clip_grad_norm_(
                    self.model.parameters(), self.cfg.clip_grad
                )
            self.optimizer.step()
            self.scheduler.step()
        if self.cfg.empty_cache:
            torch.cuda.empty_cache()
        self.comm_info["model_output_dict"] = output_dict

    def after_epoch(self):
        for h in self.hooks:
            h.after_epoch()
        self.storage.reset_histories()
        if self.cfg.empty_cache_per_epoch:
            torch.cuda.empty_cache()

    def build_model(self):
        model = build_model(self.cfg.model)
        if self.cfg.sync_bn:
            model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
        n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
        # logger.info(f"Model: \n{self.model}")
        self.logger.info(f"Num params: {n_parameters}")
        model = create_ddp_model(
            model.cuda(),
            broadcast_buffers=False,
            find_unused_parameters=self.cfg.find_unused_parameters,
        )
        return model

    def build_writer(self):
        writer = SummaryWriter(self.cfg.save_path) if comm.is_main_process() else None
        self.logger.info(f"Tensorboard writer logging dir: {self.cfg.save_path}")
        return writer

    def build_train_loader(self):
        train_data = build_dataset(self.cfg.data.train)

        if comm.get_world_size() > 1:
            train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
        else:
            train_sampler = None

        init_fn = (
            partial(
                worker_init_fn,
                num_workers=self.cfg.num_worker_per_gpu,
                rank=comm.get_rank(),
                seed=self.cfg.seed,
            )
            if self.cfg.seed is not None
            else None
        )

        train_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=self.cfg.batch_size_per_gpu,
            shuffle=(train_sampler is None),
            num_workers=self.cfg.num_worker_per_gpu,
            sampler=train_sampler,
            collate_fn=partial(point_collate_fn, mix_prob=self.cfg.mix_prob),
            pin_memory=True,
            worker_init_fn=init_fn,
            drop_last=True,
            persistent_workers=True,
        )
        return train_loader

    def build_val_loader(self):
        val_loader = None
        if self.cfg.evaluate:
            val_data = build_dataset(self.cfg.data.val)
            if comm.get_world_size() > 1:
                val_sampler = torch.utils.data.distributed.DistributedSampler(val_data)
            else:
                val_sampler = None
            val_loader = torch.utils.data.DataLoader(
                val_data,
                batch_size=self.cfg.batch_size_val_per_gpu,
                shuffle=False,
                num_workers=self.cfg.num_worker_per_gpu,
                pin_memory=True,
                sampler=val_sampler,
                collate_fn=collate_fn,
            )
        return val_loader

    def build_optimizer(self):
        return build_optimizer(self.cfg.optimizer, self.model, self.cfg.param_dicts)

    def build_scheduler(self):
        assert hasattr(self, "optimizer")
        assert hasattr(self, "train_loader")
        self.cfg.scheduler.total_steps = len(self.train_loader) * self.cfg.eval_epoch
        return build_scheduler(self.cfg.scheduler, self.optimizer)

    def build_scaler(self):
        scaler = torch.cuda.amp.GradScaler() if self.cfg.enable_amp else None
        return scaler


@TRAINERS.register_module("MultiDatasetTrainer")
class MultiDatasetTrainer(Trainer):
    def build_train_loader(self):
        from pointcept.datasets import MultiDatasetDataloader

        train_data = build_dataset(self.cfg.data.train)
        train_loader = MultiDatasetDataloader(
            train_data,
            self.cfg.batch_size_per_gpu,
            self.cfg.num_worker_per_gpu,
            self.cfg.mix_prob,
            self.cfg.seed,
        )
        self.comm_info["iter_per_epoch"] = len(train_loader)
        return train_loader