File size: 4,080 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

import torch.nn as nn
import torch.nn.functional as F

from fewshot_data.model.base.conv4d import CenterPivotConv4d as Conv4d


class HPNLearner(nn.Module):
    def __init__(self, inch):
        super(HPNLearner, self).__init__()

        def make_building_block(in_channel, out_channels, kernel_sizes, spt_strides, group=4):
            assert len(out_channels) == len(kernel_sizes) == len(spt_strides)

            building_block_layers = []
            for idx, (outch, ksz, stride) in enumerate(zip(out_channels, kernel_sizes, spt_strides)):
                inch = in_channel if idx == 0 else out_channels[idx - 1]
                ksz4d = (ksz,) * 4
                str4d = (1, 1) + (stride,) * 2
                pad4d = (ksz // 2,) * 4

                building_block_layers.append(Conv4d(inch, outch, ksz4d, str4d, pad4d))
                building_block_layers.append(nn.GroupNorm(group, outch))
                building_block_layers.append(nn.ReLU(inplace=True))

            return nn.Sequential(*building_block_layers)

        outch1, outch2, outch3 = 16, 64, 128

        # Squeezing building blocks
        self.encoder_layer4 = make_building_block(inch[0], [outch1, outch2, outch3], [3, 3, 3], [2, 2, 2])
        self.encoder_layer3 = make_building_block(inch[1], [outch1, outch2, outch3], [5, 3, 3], [4, 2, 2])
        self.encoder_layer2 = make_building_block(inch[2], [outch1, outch2, outch3], [5, 5, 3], [4, 4, 2])

        # Mixing building blocks
        self.encoder_layer4to3 = make_building_block(outch3, [outch3, outch3, outch3], [3, 3, 3], [1, 1, 1])
        self.encoder_layer3to2 = make_building_block(outch3, [outch3, outch3, outch3], [3, 3, 3], [1, 1, 1])

        # Decoder layers
        self.decoder1 = nn.Sequential(nn.Conv2d(outch3, outch3, (3, 3), padding=(1, 1), bias=True),
                                      nn.ReLU(),
                                      nn.Conv2d(outch3, outch2, (3, 3), padding=(1, 1), bias=True),
                                      nn.ReLU())

        self.decoder2 = nn.Sequential(nn.Conv2d(outch2, outch2, (3, 3), padding=(1, 1), bias=True),
                                      nn.ReLU(),
                                      nn.Conv2d(outch2, 2, (3, 3), padding=(1, 1), bias=True))

    def interpolate_support_dims(self, hypercorr, spatial_size=None):
        bsz, ch, ha, wa, hb, wb = hypercorr.size()
        hypercorr = hypercorr.permute(0, 4, 5, 1, 2, 3).contiguous().view(bsz * hb * wb, ch, ha, wa)
        hypercorr = F.interpolate(hypercorr, spatial_size, mode='bilinear', align_corners=True)
        o_hb, o_wb = spatial_size
        hypercorr = hypercorr.view(bsz, hb, wb, ch, o_hb, o_wb).permute(0, 3, 4, 5, 1, 2).contiguous()
        return hypercorr

    def forward(self, hypercorr_pyramid):

        # Encode hypercorrelations from each layer (Squeezing building blocks)
        hypercorr_sqz4 = self.encoder_layer4(hypercorr_pyramid[0])
        hypercorr_sqz3 = self.encoder_layer3(hypercorr_pyramid[1])
        hypercorr_sqz2 = self.encoder_layer2(hypercorr_pyramid[2])

        # Propagate encoded 4D-tensor (Mixing building blocks)
        hypercorr_sqz4 = self.interpolate_support_dims(hypercorr_sqz4, hypercorr_sqz3.size()[-4:-2])
        hypercorr_mix43 = hypercorr_sqz4 + hypercorr_sqz3
        hypercorr_mix43 = self.encoder_layer4to3(hypercorr_mix43)

        hypercorr_mix43 = self.interpolate_support_dims(hypercorr_mix43, hypercorr_sqz2.size()[-4:-2])
        hypercorr_mix432 = hypercorr_mix43 + hypercorr_sqz2
        hypercorr_mix432 = self.encoder_layer3to2(hypercorr_mix432)

        bsz, ch, ha, wa, hb, wb = hypercorr_mix432.size()
        hypercorr_encoded = hypercorr_mix432.view(bsz, ch, ha, wa, -1).mean(dim=-1)

        # Decode the encoded 4D-tensor
        hypercorr_decoded = self.decoder1(hypercorr_encoded)
        upsample_size = (hypercorr_decoded.size(-1) * 2,) * 2
        hypercorr_decoded = F.interpolate(hypercorr_decoded, upsample_size, mode='bilinear', align_corners=True)
        logit_mask = self.decoder2(hypercorr_decoded)

        return logit_mask