LSM / app.py
kairunwen's picture
Debug
c022669
raw
history blame
8.11 kB
import os, subprocess, shlex, sys, gc
import time
import torch
import numpy as np
import shutil
import argparse
import gradio as gr
import uuid
import spaces
from huggingface_hub import hf_hub_download
#
subprocess.run(shlex.split("pip install wheel/torch_scatter-2.1.2+pt21cu121-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/flash_attn-2.6.3+cu123torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/pointops-1.0-cp310-cp310-linux_x86_64.whl"))
from src.utils.visualization_utils import render_video_from_file
from src.model import LSM_MASt3R
# 定义相对路径和 Hugging Face 仓库信息
relative_model_dir = "checkpoints" # 文件夹名称
relative_model_path = os.path.join(relative_model_dir, "checkpoint-40.pth") # 相对路径
model_repo = "kairunwen/LSM" # Hugging Face 仓库
model_filename = "checkpoint-40.pth" # 仓库中的文件名
# 转换为绝对路径
model_path = os.path.abspath(relative_model_path)
try:
# 创建 checkpoints 文件夹(如果不存在)
os.makedirs(relative_model_dir, exist_ok=True)
print(f"确保 {relative_model_dir} 文件夹存在")
# 验证文件是否存在
if os.path.exists(model_path):
print(f"找到本地模型文件: {model_path}")
else:
print(f"本地模型文件 {model_path} 不存在,正在从 Hugging Face 下载...")
model_path = hf_hub_download(repo_id=model_repo, filename=model_filename)
# 可选:将下载的文件移动到 checkpoints 文件夹
import shutil
shutil.move(model_path, os.path.abspath(relative_model_path))
model_path = os.path.abspath(relative_model_path)
print(f"模型文件已下载并移动到: {model_path}")
# 加载模型
model = LSM_MASt3R.from_pretrained(model_path, device='cuda')
model = model.eval()
print("模型加载成功并设置为评估模式!")
except FileNotFoundError:
print(f"错误: 无法找到或下载文件 {model_filename},请检查路径或仓库 {model_repo}。")
except KeyError as e:
print(f"错误: 检查点文件格式不正确,缺少键 {e}。请确认 checkpoint-40.pth 包含 'args' 和 'model'。")
except Exception as e:
print(f"发生未知错误: {e}")
# 调试:检查检查点内容
ckpt = torch.load(model_path, map_location='cpu')
print("检查点键:", ckpt.keys())
print("config.model:", ckpt['args'].model)
@spaces.GPU(duration=80)
def process(inputfiles, input_path=None):
# Create a unique cache directory
cache_dir = os.path.join('outputs', str(uuid.uuid4()))
os.makedirs(cache_dir, exist_ok=True)
if input_path is not None:
imgs_path = './assets/examples/' + input_path
imgs_names = sorted(os.listdir(imgs_path))
inputfiles = []
for imgs_name in imgs_names:
file_path = os.path.join(imgs_path, imgs_name)
print(file_path)
inputfiles.append(file_path)
print(inputfiles)
filelist = inputfiles
if len(filelist) != 2:
gr.Warning("Please select 2 images")
shutil.rmtree(cache_dir) # Clean up cache directory
return None, None, None, None, None, None
ply_path = os.path.join(cache_dir, 'gaussians.ply')
# render_video_from_file(filelist, model, output_path=cache_dir, resolution=224)
render_video_from_file(filelist, model, output_path=cache_dir, resolution=512)
rgb_video_path = os.path.join(cache_dir, 'moved', 'output_images_video.mp4')
depth_video_path = os.path.join(cache_dir, 'moved', 'output_depth_video.mp4')
feature_video_path = os.path.join(cache_dir, 'moved', 'output_fmap_video.mp4')
return filelist, rgb_video_path, depth_video_path, feature_video_path, ply_path, ply_path
_TITLE = 'LargeSpatialModel'
_DESCRIPTION = '''
<div style="display: flex; justify-content: center; align-items: center;">
<div style="width: 100%; text-align: center; font-size: 30px;">
<strong>Large Spatial Model: End-to-end Unposed Images to Semantic 3D</strong>
</div>
</div>
<p></p>
<div align="center">
<a style="display:inline-block" href="https://arxiv.org/abs/2410.18956"><img src="https://img.shields.io/badge/ArXiv-2410.18956-b31b1b?logo=arxiv" alt='arxiv'></a>&nbsp;
<a style="display:inline-block" href="https://largespatialmodel.github.io/"><img src='https://img.shields.io/badge/Project_Page-ff7512?logo=lightning'></a>&nbsp;
<a title="Social" href="https://x.com/WayneINR" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</div>
<p></p>
* Official demo of: [LargeSpatialModel: End-to-end Unposed Images to Semantic 3D](https://largespatialmodel.github.io/).
* Examples for direct viewing: you can simply click the examples (in the bottom of the page), to quickly view the results on representative data.
'''
block = gr.Blocks().queue()
with block:
gr.Markdown(_DESCRIPTION)
with gr.Column(variant="panel"):
with gr.Tab("Input"):
with gr.Row():
with gr.Column(scale=1):
inputfiles = gr.File(file_count="multiple", label="Load Images")
input_path = gr.Textbox(visible=False, label="example_path")
with gr.Column(scale=1):
image_gallery = gr.Gallery(
label="Gallery",
show_label=False,
elem_id="gallery",
columns=[2],
height=300, # Fixed height
object_fit="cover" # Ensure images fill the space
)
button_gen = gr.Button("Start Reconstruction", elem_id="button_gen")
processing_msg = gr.Markdown("Processing...", visible=False, elem_id="processing_msg")
with gr.Column(variant="panel"):
with gr.Tab("Output"):
with gr.Row():
with gr.Column(scale=1):
rgb_video = gr.Video(label="RGB Video", autoplay=True)
with gr.Column(scale=1):
feature_video = gr.Video(label="Feature Video", autoplay=True)
with gr.Column(scale=1):
depth_video = gr.Video(label="Depth Video", autoplay=True)
with gr.Row():
with gr.Group():
output_model = gr.Model3D(
label="3D Dense Model under Gaussian Splats Formats, need more time to visualize",
interactive=False,
camera_position=[0.5, 0.5, 1], # Slight offset for better model viewing
height=600,
)
gr.Markdown(
"""
<div class="model-description">
&nbsp;&nbsp;Use the left mouse button to rotate, the scroll wheel to zoom, and the right mouse button to move.
</div>
"""
)
with gr.Row():
output_file = gr.File(label="PLY File")
examples = gr.Examples(
examples=[
"sofa",
],
inputs=[input_path],
outputs=[image_gallery, rgb_video, depth_video, feature_video, output_model, output_file],
fn=lambda x: process(inputfiles=None, input_path=x),
cache_examples=True,
label="Examples"
)
button_gen.click(
process,
inputs=[inputfiles],
outputs=[image_gallery, rgb_video, depth_video, feature_video, output_model, output_file],
)
block.launch(server_name="0.0.0.0", share=False)