# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import numpy as np | |
import torch | |
import math | |
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer | |
from .gaussian_model import GaussianModel | |
from .sh_utils import eval_sh | |
from .graphics_utils import getWorld2View2, getProjectionMatrix | |
class DummyCamera: | |
def __init__(self, R, T, FoVx, FoVy, W, H): | |
self.projection_matrix = getProjectionMatrix(znear=0.01, zfar=100.0, fovX=FoVx, fovY=FoVy).transpose(0,1).cuda() | |
self.R = R | |
self.T = T | |
self.world_view_transform = torch.tensor(getWorld2View2(R, T, np.array([0,0,0]), 1.0)).transpose(0, 1).cuda() | |
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0) | |
self.camera_center = self.world_view_transform.inverse()[3, :3] | |
self.image_width = W | |
self.image_height = H | |
self.FoVx = FoVx | |
self.FoVy = FoVy | |
class DummyPipeline: | |
convert_SHs_python = False | |
compute_cov3D_python = False | |
debug = False | |
def calculate_fov(output_width, output_height, focal_length, aspect_ratio=1.0, invert_y=False): | |
fovx = 2 * math.atan((output_width / (2 * focal_length))) | |
fovy = 2 * math.atan((output_height / aspect_ratio) / (2 * focal_length)) | |
if invert_y: | |
fovy = -fovy | |
return fovx, fovy | |
# def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None): | |
# """ | |
# Render the scene. | |
# Background tensor (bg_color) must be on GPU! | |
# """ | |
# # Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means | |
# screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0 | |
# try: | |
# screenspace_points.retain_grad() | |
# except: | |
# pass | |
# # Set up rasterization configuration | |
# tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
# tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
# raster_settings = GaussianRasterizationSettings( | |
# image_height=int(viewpoint_camera.image_height), | |
# image_width=int(viewpoint_camera.image_width), | |
# tanfovx=tanfovx, | |
# tanfovy=tanfovy, | |
# bg=bg_color, | |
# scale_modifier=scaling_modifier, | |
# viewmatrix=viewpoint_camera.world_view_transform, | |
# projmatrix=viewpoint_camera.full_proj_transform, | |
# sh_degree=pc.active_sh_degree, | |
# campos=viewpoint_camera.camera_center, | |
# prefiltered=False, | |
# debug=pipe.debug | |
# ) | |
# rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
# means3D = pc.get_xyz | |
# means2D = screenspace_points | |
# opacity = pc.get_opacity | |
# # If precomputed 3d covariance is provided, use it. If not, then it will be computed from | |
# # scaling / rotation by the rasterizer. | |
# scales = None | |
# rotations = None | |
# cov3D_precomp = None | |
# if pipe.compute_cov3D_python: | |
# cov3D_precomp = pc.get_covariance(scaling_modifier) | |
# else: | |
# scales = pc.get_scaling | |
# rotations = pc.get_rotation | |
# # If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors | |
# # from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. | |
# shs = None | |
# colors_precomp = None | |
# if override_color is None: | |
# if pipe.convert_SHs_python: | |
# shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2) | |
# dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1)) | |
# dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True) | |
# sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized) | |
# colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) | |
# else: | |
# shs = pc.get_features | |
# else: | |
# colors_precomp = override_color | |
# # Rasterize visible Gaussians to image, obtain their radii (on screen). | |
# rendered_image, radii = rasterizer( | |
# means3D = means3D, | |
# means2D = means2D, | |
# shs = shs, | |
# colors_precomp = colors_precomp, | |
# opacities = opacity, | |
# scales = scales, | |
# rotations = rotations, | |
# cov3D_precomp = cov3D_precomp) | |
# # Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
# # They will be excluded from value updates used in the splitting criteria. | |
# return {"render": rendered_image, | |
# "viewspace_points": screenspace_points, | |
# "visibility_filter" : radii > 0, | |
# "radii": radii} | |
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None): | |
""" | |
Render the scene. | |
Background tensor (bg_color) must be on GPU! | |
""" | |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means | |
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0 | |
try: | |
screenspace_points.retain_grad() | |
except: | |
pass | |
# Set up rasterization configuration | |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
raster_settings = GaussianRasterizationSettings( | |
image_height=int(viewpoint_camera.image_height), | |
image_width=int(viewpoint_camera.image_width), | |
tanfovx=tanfovx, | |
tanfovy=tanfovy, | |
bg=bg_color, | |
scale_modifier=scaling_modifier, | |
viewmatrix=viewpoint_camera.world_view_transform, | |
projmatrix=viewpoint_camera.full_proj_transform, | |
sh_degree=pc.active_sh_degree, | |
campos=viewpoint_camera.camera_center, | |
prefiltered=False, | |
debug=pipe.debug | |
) | |
rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
means3D = pc.get_xyz | |
means2D = screenspace_points | |
opacity = pc.get_opacity | |
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from | |
# scaling / rotation by the rasterizer. | |
scales = None | |
rotations = None | |
cov3D_precomp = None | |
if pipe.compute_cov3D_python: | |
cov3D_precomp = pc.get_covariance(scaling_modifier) | |
else: | |
scales = pc.get_scaling | |
rotations = pc.get_rotation | |
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors | |
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. | |
shs = None | |
colors_precomp = None | |
if override_color is None: | |
if pipe.convert_SHs_python: | |
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2) | |
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1)) | |
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True) | |
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized) | |
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) | |
else: | |
shs = pc.get_features | |
else: | |
colors_precomp = override_color | |
semantic_feature = pc.get_semantic_feature | |
# Rasterize visible Gaussians to image, obtain their radii (on screen). | |
rendered_image, feature_map, radii, depth = rasterizer( | |
means3D = means3D, | |
means2D = means2D, | |
shs = shs, | |
colors_precomp = colors_precomp, | |
semantic_feature = semantic_feature, | |
opacities = opacity, | |
scales = scales, | |
rotations = rotations, | |
cov3D_precomp = cov3D_precomp) | |
# Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
# They will be excluded from value updates used in the splitting criteria. | |
return {"render": rendered_image, | |
"viewspace_points": screenspace_points, | |
"visibility_filter" : radii > 0, | |
"radii": radii, | |
'feature_map': feature_map, | |
"depth": depth} ###d |