|
r""" FSS-1000 few-shot semantic segmentation dataset """ |
|
import os |
|
import glob |
|
|
|
from torch.utils.data import Dataset |
|
import torch.nn.functional as F |
|
import torch |
|
import PIL.Image as Image |
|
import numpy as np |
|
|
|
|
|
class DatasetFSS(Dataset): |
|
def __init__(self, datapath, fold, transform, split, shot, use_original_imgsize=None): |
|
self.split = split |
|
self.benchmark = 'fss' |
|
self.shot = shot |
|
|
|
self.base_path = os.path.join(datapath, 'FSS-1000') |
|
|
|
|
|
|
|
with open('fewshot_data/data/splits/fss/%s.txt' % split, 'r') as f: |
|
self.categories = f.read().split('\n')[:-1] |
|
self.categories = sorted(self.categories) |
|
|
|
self.class_ids = self.build_class_ids() |
|
self.img_metadata = self.build_img_metadata() |
|
|
|
self.transform = transform |
|
|
|
def __len__(self): |
|
return len(self.img_metadata) |
|
|
|
def __getitem__(self, idx): |
|
query_name, support_names, class_sample = self.sample_episode(idx) |
|
query_img, query_mask, support_imgs, support_masks = self.load_frame(query_name, support_names) |
|
|
|
query_img = self.transform(query_img) |
|
query_mask = F.interpolate(query_mask.unsqueeze(0).unsqueeze(0).float(), query_img.size()[-2:], mode='nearest').squeeze() |
|
if self.shot: |
|
support_imgs = torch.stack([self.transform(support_img) for support_img in support_imgs]) |
|
|
|
support_masks_tmp = [] |
|
for smask in support_masks: |
|
smask = F.interpolate(smask.unsqueeze(0).unsqueeze(0).float(), support_imgs.size()[-2:], mode='nearest').squeeze() |
|
support_masks_tmp.append(smask) |
|
support_masks = torch.stack(support_masks_tmp) |
|
|
|
batch = {'query_img': query_img, |
|
'query_mask': query_mask, |
|
'query_name': query_name, |
|
|
|
'support_imgs': support_imgs, |
|
'support_masks': support_masks, |
|
'support_names': support_names, |
|
|
|
'class_id': torch.tensor(class_sample)} |
|
|
|
return batch |
|
|
|
def load_frame(self, query_name, support_names): |
|
query_img = Image.open(query_name).convert('RGB') |
|
if self.shot: |
|
support_imgs = [Image.open(name).convert('RGB') for name in support_names] |
|
else: |
|
support_imgs = [] |
|
|
|
query_id = query_name.split('/')[-1].split('.')[0] |
|
query_name = os.path.join(os.path.dirname(query_name), query_id) + '.png' |
|
|
|
if self.shot: |
|
support_ids = [name.split('/')[-1].split('.')[0] for name in support_names] |
|
support_names = [os.path.join(os.path.dirname(name), sid) + '.png' for name, sid in zip(support_names, support_ids)] |
|
|
|
query_mask = self.read_mask(query_name) |
|
if self.shot: |
|
support_masks = [self.read_mask(name) for name in support_names] |
|
else: |
|
support_masks = [] |
|
|
|
return query_img, query_mask, support_imgs, support_masks |
|
|
|
def read_mask(self, img_name): |
|
mask = torch.tensor(np.array(Image.open(img_name).convert('L'))) |
|
mask[mask < 128] = 0 |
|
mask[mask >= 128] = 1 |
|
return mask |
|
|
|
def sample_episode(self, idx): |
|
query_name = self.img_metadata[idx] |
|
class_sample = self.categories.index(query_name.split('/')[-2]) |
|
if self.split == 'val': |
|
class_sample += 520 |
|
elif self.split == 'test': |
|
class_sample += 760 |
|
|
|
support_names = [] |
|
|
|
if self.split == 'test' and self.shot == 1: |
|
while True: |
|
support_name = 1 |
|
support_name = os.path.join(os.path.dirname(query_name), str(support_name)) + '.jpg' |
|
if query_name != support_name: |
|
support_names.append(support_name) |
|
else: |
|
print('Error in sample_episode!') |
|
exit() |
|
if len(support_names) == self.shot: break |
|
elif self.shot: |
|
while True: |
|
support_name = np.random.choice(range(1, 11), 1, replace=False)[0] |
|
support_name = os.path.join(os.path.dirname(query_name), str(support_name)) + '.jpg' |
|
if query_name != support_name: support_names.append(support_name) |
|
if len(support_names) == self.shot: break |
|
|
|
return query_name, support_names, class_sample |
|
|
|
def build_class_ids(self): |
|
if self.split == 'trn': |
|
class_ids = range(0, 520) |
|
elif self.split == 'val': |
|
class_ids = range(520, 760) |
|
elif self.split == 'test': |
|
class_ids = range(760, 1000) |
|
return class_ids |
|
|
|
def build_img_metadata(self): |
|
img_metadata = [] |
|
for cat in self.categories: |
|
img_paths = sorted([path for path in glob.glob('%s/*' % os.path.join(self.base_path, cat))]) |
|
if self.split == 'test' and self.shot == 1: |
|
for i in range(1, len(img_paths)): |
|
img_path = img_paths[i] |
|
if os.path.basename(img_path).split('.')[1] == 'jpg': |
|
img_metadata.append(img_path) |
|
else: |
|
for img_path in img_paths: |
|
if os.path.basename(img_path).split('.')[1] == 'jpg': |
|
img_metadata.append(img_path) |
|
return img_metadata |
|
|