""" ArkitScenes Dataset Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite our work if the code is helpful to you. """ import os import glob import numpy as np import torch from copy import deepcopy from torch.utils.data import Dataset from pointcept.utils.logger import get_root_logger from .builder import DATASETS from .transform import Compose, TRANSFORMS from .preprocessing.scannet.meta_data.scannet200_constants import VALID_CLASS_IDS_200 @DATASETS.register_module() class ArkitScenesDataset(Dataset): def __init__( self, split="Training", data_root="data/ARKitScenesMesh", transform=None, test_mode=False, test_cfg=None, loop=1, ): super(ArkitScenesDataset, self).__init__() self.data_root = data_root self.split = split self.transform = Compose(transform) self.loop = ( loop if not test_mode else 1 ) # force make loop = 1 while in test mode self.test_mode = test_mode self.test_cfg = test_cfg if test_mode else None self.class2id = np.array(VALID_CLASS_IDS_200) if test_mode: self.test_voxelize = TRANSFORMS.build(self.test_cfg.voxelize) self.test_crop = TRANSFORMS.build(self.test_cfg.crop) self.post_transform = Compose(self.test_cfg.post_transform) self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform] self.data_list = self.get_data_list() logger = get_root_logger() logger.info( "Totally {} x {} samples in {} set.".format( len(self.data_list), self.loop, split ) ) def get_data_list(self): if isinstance(self.split, str): data_list = glob.glob(os.path.join(self.data_root, self.split, "*.pth")) elif isinstance(self.split, list): data_list = [] for split in self.split: data_list += glob.glob(os.path.join(self.data_root, split, "*.pth")) else: raise NotImplementedError return data_list def get_data(self, idx): data = torch.load(self.data_list[idx % len(self.data_list)]) coord = data["coord"] color = data["color"] normal = data["normal"] segment = np.zeros(coord.shape[0]) data_dict = dict(coord=coord, normal=normal, color=color, segment=segment) return data_dict def get_data_name(self, idx): data_idx = self.data_idx[idx % len(self.data_idx)] return os.path.basename(self.data_list[data_idx]).split(".")[0] def prepare_train_data(self, idx): # load data data_dict = self.get_data(idx) data_dict = self.transform(data_dict) return data_dict def prepare_test_data(self, idx): # load data data_dict = self.get_data(idx) segment = data_dict.pop("segment") data_dict = self.transform(data_dict) data_dict_list = [] for aug in self.aug_transform: data_dict_list.append(aug(deepcopy(data_dict))) input_dict_list = [] for data in data_dict_list: data_part_list = self.test_voxelize(data) for data_part in data_part_list: data_part_list = self.test_crop(data_part) input_dict_list += data_part_list for i in range(len(input_dict_list)): input_dict_list[i] = self.post_transform(input_dict_list[i]) return input_dict_list, segment def __getitem__(self, idx): if self.test_mode: return self.prepare_test_data(idx) else: return self.prepare_train_data(idx) def __len__(self): return len(self.data_list) * self.loop