""" Default Datasets Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite our work if the code is helpful to you. """ import os import glob import numpy as np import torch from copy import deepcopy from torch.utils.data import Dataset from collections.abc import Sequence from pointcept.utils.logger import get_root_logger from pointcept.utils.cache import shared_dict from .builder import DATASETS, build_dataset from .transform import Compose, TRANSFORMS @DATASETS.register_module() class DefaultDataset(Dataset): VALID_ASSETS = [ "coord", "color", "normal", "strength", "segment", "instance", "pose", ] def __init__( self, split="train", data_root="data/dataset", transform=None, test_mode=False, test_cfg=None, cache=False, ignore_index=-1, loop=1, ): super(DefaultDataset, self).__init__() self.data_root = data_root self.split = split self.transform = Compose(transform) self.cache = cache self.ignore_index = ignore_index self.loop = ( loop if not test_mode else 1 ) # force make loop = 1 while in test mode self.test_mode = test_mode self.test_cfg = test_cfg if test_mode else None if test_mode: self.test_voxelize = TRANSFORMS.build(self.test_cfg.voxelize) self.test_crop = ( TRANSFORMS.build(self.test_cfg.crop) if self.test_cfg.crop else None ) self.post_transform = Compose(self.test_cfg.post_transform) self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform] self.data_list = self.get_data_list() logger = get_root_logger() logger.info( "Totally {} x {} samples in {} set.".format( len(self.data_list), self.loop, split ) ) def get_data_list(self): if isinstance(self.split, str): data_list = glob.glob(os.path.join(self.data_root, self.split, "*")) elif isinstance(self.split, Sequence): data_list = [] for split in self.split: data_list += glob.glob(os.path.join(self.data_root, split, "*")) else: raise NotImplementedError return data_list def get_data(self, idx): data_path = self.data_list[idx % len(self.data_list)] name = self.get_data_name(idx) if self.cache: cache_name = f"pointcept-{name}" return shared_dict(cache_name) data_dict = {} assets = os.listdir(data_path) for asset in assets: if not asset.endswith(".npy"): continue if asset[:-4] not in self.VALID_ASSETS: continue data_dict[asset[:-4]] = np.load(os.path.join(data_path, asset)) data_dict["name"] = name if "coord" in data_dict.keys(): data_dict["coord"] = data_dict["coord"].astype(np.float32) if "color" in data_dict.keys(): data_dict["color"] = data_dict["color"].astype(np.float32) if "normal" in data_dict.keys(): data_dict["normal"] = data_dict["normal"].astype(np.float32) if "segment" in data_dict.keys(): data_dict["segment"] = data_dict["segment"].reshape([-1]).astype(np.int32) else: data_dict["segment"] = ( np.ones(data_dict["coord"].shape[0], dtype=np.int32) * -1 ) if "instance" in data_dict.keys(): data_dict["instance"] = data_dict["instance"].reshape([-1]).astype(np.int32) else: data_dict["instance"] = ( np.ones(data_dict["coord"].shape[0], dtype=np.int32) * -1 ) return data_dict def get_data_name(self, idx): return os.path.basename(self.data_list[idx % len(self.data_list)]) def prepare_train_data(self, idx): # load data data_dict = self.get_data(idx) data_dict = self.transform(data_dict) return data_dict def prepare_test_data(self, idx): # load data data_dict = self.get_data(idx) data_dict = self.transform(data_dict) result_dict = dict(segment=data_dict.pop("segment"), name=data_dict.pop("name")) if "origin_segment" in data_dict: assert "inverse" in data_dict result_dict["origin_segment"] = data_dict.pop("origin_segment") result_dict["inverse"] = data_dict.pop("inverse") data_dict_list = [] for aug in self.aug_transform: data_dict_list.append(aug(deepcopy(data_dict))) fragment_list = [] for data in data_dict_list: if self.test_voxelize is not None: data_part_list = self.test_voxelize(data) else: data["index"] = np.arange(data["coord"].shape[0]) data_part_list = [data] for data_part in data_part_list: if self.test_crop is not None: data_part = self.test_crop(data_part) else: data_part = [data_part] fragment_list += data_part for i in range(len(fragment_list)): fragment_list[i] = self.post_transform(fragment_list[i]) result_dict["fragment_list"] = fragment_list return result_dict def __getitem__(self, idx): if self.test_mode: return self.prepare_test_data(idx) else: return self.prepare_train_data(idx) def __len__(self): return len(self.data_list) * self.loop @DATASETS.register_module() class ConcatDataset(Dataset): def __init__(self, datasets, loop=1): super(ConcatDataset, self).__init__() self.datasets = [build_dataset(dataset) for dataset in datasets] self.loop = loop self.data_list = self.get_data_list() logger = get_root_logger() logger.info( "Totally {} x {} samples in the concat set.".format( len(self.data_list), self.loop ) ) def get_data_list(self): data_list = [] for i in range(len(self.datasets)): data_list.extend( zip( np.ones(len(self.datasets[i])) * i, np.arange(len(self.datasets[i])) ) ) return data_list def get_data(self, idx): dataset_idx, data_idx = self.data_list[idx % len(self.data_list)] return self.datasets[dataset_idx][data_idx] def get_data_name(self, idx): dataset_idx, data_idx = self.data_list[idx % len(self.data_list)] return self.datasets[dataset_idx].get_data_name(data_idx) def __getitem__(self, idx): return self.get_data(idx) def __len__(self): return len(self.data_list) * self.loop