""" Semantic KITTI dataset Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite our work if the code is helpful to you. """ import os import numpy as np from .builder import DATASETS from .defaults import DefaultDataset @DATASETS.register_module() class SemanticKITTIDataset(DefaultDataset): def __init__(self, ignore_index=-1, **kwargs): self.ignore_index = ignore_index self.learning_map = self.get_learning_map(ignore_index) self.learning_map_inv = self.get_learning_map_inv(ignore_index) super().__init__(ignore_index=ignore_index, **kwargs) def get_data_list(self): split2seq = dict( train=[0, 1, 2, 3, 4, 5, 6, 7, 9, 10], val=[8], test=[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], ) if isinstance(self.split, str): seq_list = split2seq[self.split] elif isinstance(self.split, list): seq_list = [] for split in self.split: seq_list += split2seq[split] else: raise NotImplementedError data_list = [] for seq in seq_list: seq = str(seq).zfill(2) seq_folder = os.path.join(self.data_root, "dataset", "sequences", seq) seq_files = sorted(os.listdir(os.path.join(seq_folder, "velodyne"))) data_list += [ os.path.join(seq_folder, "velodyne", file) for file in seq_files ] return data_list def get_data(self, idx): data_path = self.data_list[idx % len(self.data_list)] with open(data_path, "rb") as b: scan = np.fromfile(b, dtype=np.float32).reshape(-1, 4) coord = scan[:, :3] strength = scan[:, -1].reshape([-1, 1]) label_file = data_path.replace("velodyne", "labels").replace(".bin", ".label") if os.path.exists(label_file): with open(label_file, "rb") as a: segment = np.fromfile(a, dtype=np.int32).reshape(-1) segment = np.vectorize(self.learning_map.__getitem__)( segment & 0xFFFF ).astype(np.int32) else: segment = np.zeros(scan.shape[0]).astype(np.int32) data_dict = dict( coord=coord, strength=strength, segment=segment, name=self.get_data_name(idx), ) return data_dict def get_data_name(self, idx): file_path = self.data_list[idx % len(self.data_list)] dir_path, file_name = os.path.split(file_path) sequence_name = os.path.basename(os.path.dirname(dir_path)) frame_name = os.path.splitext(file_name)[0] data_name = f"{sequence_name}_{frame_name}" return data_name @staticmethod def get_learning_map(ignore_index): learning_map = { 0: ignore_index, # "unlabeled" 1: ignore_index, # "outlier" mapped to "unlabeled" --------------------------mapped 10: 0, # "car" 11: 1, # "bicycle" 13: 4, # "bus" mapped to "other-vehicle" --------------------------mapped 15: 2, # "motorcycle" 16: 4, # "on-rails" mapped to "other-vehicle" ---------------------mapped 18: 3, # "truck" 20: 4, # "other-vehicle" 30: 5, # "person" 31: 6, # "bicyclist" 32: 7, # "motorcyclist" 40: 8, # "road" 44: 9, # "parking" 48: 10, # "sidewalk" 49: 11, # "other-ground" 50: 12, # "building" 51: 13, # "fence" 52: ignore_index, # "other-structure" mapped to "unlabeled" ------------------mapped 60: 8, # "lane-marking" to "road" ---------------------------------mapped 70: 14, # "vegetation" 71: 15, # "trunk" 72: 16, # "terrain" 80: 17, # "pole" 81: 18, # "traffic-sign" 99: ignore_index, # "other-object" to "unlabeled" ----------------------------mapped 252: 0, # "moving-car" to "car" ------------------------------------mapped 253: 6, # "moving-bicyclist" to "bicyclist" ------------------------mapped 254: 5, # "moving-person" to "person" ------------------------------mapped 255: 7, # "moving-motorcyclist" to "motorcyclist" ------------------mapped 256: 4, # "moving-on-rails" mapped to "other-vehicle" --------------mapped 257: 4, # "moving-bus" mapped to "other-vehicle" -------------------mapped 258: 3, # "moving-truck" to "truck" --------------------------------mapped 259: 4, # "moving-other"-vehicle to "other-vehicle" ----------------mapped } return learning_map @staticmethod def get_learning_map_inv(ignore_index): learning_map_inv = { ignore_index: ignore_index, # "unlabeled" 0: 10, # "car" 1: 11, # "bicycle" 2: 15, # "motorcycle" 3: 18, # "truck" 4: 20, # "other-vehicle" 5: 30, # "person" 6: 31, # "bicyclist" 7: 32, # "motorcyclist" 8: 40, # "road" 9: 44, # "parking" 10: 48, # "sidewalk" 11: 49, # "other-ground" 12: 50, # "building" 13: 51, # "fence" 14: 70, # "vegetation" 15: 71, # "trunk" 16: 72, # "terrain" 17: 80, # "pole" 18: 81, # "traffic-sign" } return learning_map_inv