""" ShapeNet Part Dataset (Unmaintained) get processed shapenet part dataset at "https://shapenet.cs.stanford.edu/media/shapenetcore_partanno_segmentation_benchmark_v0_normal.zip" Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com) Please cite our work if the code is helpful to you. """ import os import json import torch import numpy as np from copy import deepcopy from torch.utils.data import Dataset from pointcept.utils.logger import get_root_logger from .builder import DATASETS from .transform import Compose @DATASETS.register_module() class ShapeNetPartDataset(Dataset): def __init__( self, split="train", data_root="data/shapenetcore_partanno_segmentation_benchmark_v0_normal", transform=None, test_mode=False, test_cfg=None, loop=1, ): super(ShapeNetPartDataset, self).__init__() self.data_root = data_root self.split = split self.transform = Compose(transform) self.loop = ( loop if not test_mode else 1 ) # force make loop = 1 while in test mode self.test_mode = test_mode self.test_cfg = test_cfg if test_mode else None self.cache = {} # load categories file self.categories = [] self.category2part = { "Airplane": [0, 1, 2, 3], "Bag": [4, 5], "Cap": [6, 7], "Car": [8, 9, 10, 11], "Chair": [12, 13, 14, 15], "Earphone": [16, 17, 18], "Guitar": [19, 20, 21], "Knife": [22, 23], "Lamp": [24, 25, 26, 27], "Laptop": [28, 29], "Motorbike": [30, 31, 32, 33, 34, 35], "Mug": [36, 37], "Pistol": [38, 39, 40], "Rocket": [41, 42, 43], "Skateboard": [44, 45, 46], "Table": [47, 48, 49], } self.token2category = {} with open(os.path.join(self.data_root, "synsetoffset2category.txt"), "r") as f: for line in f: ls = line.strip().split() self.token2category[ls[1]] = len(self.categories) self.categories.append(ls[0]) if test_mode: self.post_transform = Compose(self.test_cfg.post_transform) self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform] # load data list if isinstance(self.split, str): self.data_list = self.load_data_list(self.split) elif isinstance(self.split, list): self.data_list = [] for s in self.split: self.data_list += self.load_data_list(s) else: raise NotImplementedError logger = get_root_logger() logger.info( "Totally {} x {} samples in {} set.".format( len(self.data_idx), self.loop, split ) ) def load_data_list(self, split): split_file = os.path.join( self.data_root, "train_test_split", "shuffled_{}_file_list.json".format(split), ) if not os.path.isfile(split_file): raise (RuntimeError("Split file do not exist: " + split_file + "\n")) with open(split_file, "r") as f: # drop "shape_data/" and append ".txt" data_list = [ os.path.join(self.data_root, data[11:] + ".txt") for data in json.load(f) ] return data_list def prepare_train_data(self, idx): # load data data_idx = idx % len(self.data_list) if data_idx in self.cache: coord, norm, segment, cls_token = self.cache[data_idx] else: data = np.loadtxt(self.data_list[data_idx]).astype(np.float32) cls_token = self.token2category[ os.path.basename(os.path.dirname(self.data_list[data_idx])) ] coord, norm, segment = ( data[:, :3], data[:, 3:6], data[:, 6].astype(np.int32), ) self.cache[data_idx] = (coord, norm, segment, cls_token) data_dict = dict(coord=coord, norm=norm, segment=segment, cls_token=cls_token) data_dict = self.transform(data_dict) return data_dict def prepare_test_data(self, idx): # load data data_idx = self.data_idx[idx % len(self.data_idx)] data = np.loadtxt(self.data_list[data_idx]).astype(np.float32) cls_token = self.token2category[ os.path.basename(os.path.dirname(self.data_list[data_idx])) ] coord, norm, segment = data[:, :3], data[:, 3:6], data[:, 6].astype(np.int32) data_dict = dict(coord=coord, norm=norm, cls_token=cls_token) data_dict = self.transform(data_dict) data_dict_list = [] for aug in self.aug_transform: data_dict_list.append(self.post_transform(aug(deepcopy(data_dict)))) data_dict = dict( fragment_list=data_dict_list, segment=segment, name=self.get_data_name(idx) ) return data_dict def get_data_name(self, idx): data_idx = self.data_idx[idx % len(self.data_idx)] return os.path.basename(self.data_list[data_idx]).split(".")[0] def __getitem__(self, idx): if self.test_mode: return self.prepare_test_data(idx) else: return self.prepare_train_data(idx) def __len__(self): return len(self.data_idx) * self.loop