r""" Evaluate mask prediction """ import torch class Evaluator: r""" Computes intersection and union between prediction and ground-truth """ @classmethod def initialize(cls): cls.ignore_index = 255 @classmethod def classify_prediction(cls, pred_mask, gt_mask, query_ignore_idx=None): # gt_mask = batch.get('query_mask') # # Apply ignore_index in PASCAL-5i masks (following evaluation scheme in PFE-Net (TPAMI 2020)) # query_ignore_idx = batch.get('query_ignore_idx') if query_ignore_idx is not None: assert torch.logical_and(query_ignore_idx, gt_mask).sum() == 0 query_ignore_idx *= cls.ignore_index gt_mask = gt_mask + query_ignore_idx pred_mask[gt_mask == cls.ignore_index] = cls.ignore_index # compute intersection and union of each episode in a batch area_inter, area_pred, area_gt = [], [], [] for _pred_mask, _gt_mask in zip(pred_mask, gt_mask): _inter = _pred_mask[_pred_mask == _gt_mask] if _inter.size(0) == 0: # as torch.histc returns error if it gets empty tensor (pytorch 1.5.1) _area_inter = torch.tensor([0, 0], device=_pred_mask.device) else: _area_inter = torch.histc(_inter, bins=2, min=0, max=1) area_inter.append(_area_inter) area_pred.append(torch.histc(_pred_mask, bins=2, min=0, max=1)) area_gt.append(torch.histc(_gt_mask, bins=2, min=0, max=1)) area_inter = torch.stack(area_inter).t() area_pred = torch.stack(area_pred).t() area_gt = torch.stack(area_gt).t() area_union = area_pred + area_gt - area_inter return area_inter, area_union