r""" PASCAL-5i few-shot semantic segmentation dataset """ import os from torch.utils.data import Dataset import torch.nn.functional as F import torch import PIL.Image as Image import numpy as np class DatasetPASCAL(Dataset): def __init__(self, datapath, fold, transform, split, shot, use_original_imgsize): self.split = 'val' if split in ['val', 'test'] else 'trn' self.fold = fold self.nfolds = 4 self.nclass = 20 self.benchmark = 'pascal' self.shot = shot self.use_original_imgsize = use_original_imgsize self.img_path = os.path.join(datapath, 'VOC2012/JPEGImages/') self.ann_path = os.path.join(datapath, 'VOC2012/SegmentationClassAug/') self.transform = transform self.class_ids = self.build_class_ids() self.img_metadata = self.build_img_metadata() self.img_metadata_classwise = self.build_img_metadata_classwise() def __len__(self): return len(self.img_metadata) if self.split == 'trn' else 1000 def __getitem__(self, idx): idx %= len(self.img_metadata) # for testing, as n_images < 1000 query_name, support_names, class_sample = self.sample_episode(idx) query_img, query_cmask, support_imgs, support_cmasks, org_qry_imsize = self.load_frame(query_name, support_names) query_img = self.transform(query_img) if not self.use_original_imgsize: query_cmask = F.interpolate(query_cmask.unsqueeze(0).unsqueeze(0).float(), query_img.size()[-2:], mode='nearest').squeeze() query_mask, query_ignore_idx = self.extract_ignore_idx(query_cmask.float(), class_sample) if self.shot: support_imgs = torch.stack([self.transform(support_img) for support_img in support_imgs]) support_masks = [] support_ignore_idxs = [] for scmask in support_cmasks: scmask = F.interpolate(scmask.unsqueeze(0).unsqueeze(0).float(), support_imgs.size()[-2:], mode='nearest').squeeze() support_mask, support_ignore_idx = self.extract_ignore_idx(scmask, class_sample) support_masks.append(support_mask) support_ignore_idxs.append(support_ignore_idx) support_masks = torch.stack(support_masks) support_ignore_idxs = torch.stack(support_ignore_idxs) else: support_masks = [] support_ignore_idxs = [] batch = {'query_img': query_img, 'query_mask': query_mask, 'query_name': query_name, 'query_ignore_idx': query_ignore_idx, 'org_query_imsize': org_qry_imsize, 'support_imgs': support_imgs, 'support_masks': support_masks, 'support_names': support_names, 'support_ignore_idxs': support_ignore_idxs, 'class_id': torch.tensor(class_sample)} return batch def extract_ignore_idx(self, mask, class_id): boundary = (mask / 255).floor() mask[mask != class_id + 1] = 0 mask[mask == class_id + 1] = 1 return mask, boundary def load_frame(self, query_name, support_names): query_img = self.read_img(query_name) query_mask = self.read_mask(query_name) support_imgs = [self.read_img(name) for name in support_names] support_masks = [self.read_mask(name) for name in support_names] org_qry_imsize = query_img.size return query_img, query_mask, support_imgs, support_masks, org_qry_imsize def read_mask(self, img_name): r"""Return segmentation mask in PIL Image""" mask = torch.tensor(np.array(Image.open(os.path.join(self.ann_path, img_name) + '.png'))) return mask def read_img(self, img_name): r"""Return RGB image in PIL Image""" return Image.open(os.path.join(self.img_path, img_name) + '.jpg') def sample_episode(self, idx): query_name, class_sample = self.img_metadata[idx] support_names = [] if self.shot: while True: # keep sampling support set if query == support support_name = np.random.choice(self.img_metadata_classwise[class_sample], 1, replace=False)[0] if query_name != support_name: support_names.append(support_name) if len(support_names) == self.shot: break return query_name, support_names, class_sample def build_class_ids(self): nclass_trn = self.nclass // self.nfolds class_ids_val = [self.fold * nclass_trn + i for i in range(nclass_trn)] class_ids_trn = [x for x in range(self.nclass) if x not in class_ids_val] if self.split == 'trn': return class_ids_trn else: return class_ids_val def build_img_metadata(self): def read_metadata(split, fold_id): fold_n_metadata = os.path.join('fewshot_data/data/splits/pascal/%s/fold%d.txt' % (split, fold_id)) with open(fold_n_metadata, 'r') as f: fold_n_metadata = f.read().split('\n')[:-1] fold_n_metadata = [[data.split('__')[0], int(data.split('__')[1]) - 1] for data in fold_n_metadata] return fold_n_metadata img_metadata = [] if self.split == 'trn': # For training, read image-metadata of "the other" folds for fold_id in range(self.nfolds): if fold_id == self.fold: # Skip validation fold continue img_metadata += read_metadata(self.split, fold_id) elif self.split == 'val': # For validation, read image-metadata of "current" fold img_metadata = read_metadata(self.split, self.fold) else: raise Exception('Undefined split %s: ' % self.split) print('Total (%s) images are : %d' % (self.split, len(img_metadata))) return img_metadata def build_img_metadata_classwise(self): img_metadata_classwise = {} for class_id in range(self.nclass): img_metadata_classwise[class_id] = [] for img_name, img_class in self.img_metadata: img_metadata_classwise[img_class] += [img_name] return img_metadata_classwise