r""" Hypercorrelation Squeeze training (validation) code """ import argparse import torch.optim as optim import torch.nn as nn import torch from fewshot_data.model.hsnet import HypercorrSqueezeNetwork from fewshot_data.common.logger import Logger, AverageMeter from fewshot_data.common.evaluation import Evaluator from fewshot_data.common import utils from fewshot_data.data.dataset import FSSDataset def train(epoch, model, dataloader, optimizer, training): r""" Train HSNet """ # Force randomness during training / freeze randomness during testing utils.fix_randseed(None) if training else utils.fix_randseed(0) model.module.train_mode() if training else model.module.eval() average_meter = AverageMeter(dataloader.dataset) for idx, batch in enumerate(dataloader): # 1. Hypercorrelation Squeeze Networks forward pass batch = utils.to_cuda(batch) logit_mask = model(batch['query_img'], batch['support_imgs'].squeeze(1), batch['support_masks'].squeeze(1)) pred_mask = logit_mask.argmax(dim=1) # 2. Compute loss & update model parameters loss = model.module.compute_objective(logit_mask, batch['query_mask']) if training: optimizer.zero_grad() loss.backward() optimizer.step() # 3. Evaluate prediction area_inter, area_union = Evaluator.classify_prediction(pred_mask, batch) average_meter.update(area_inter, area_union, batch['class_id'], loss.detach().clone()) average_meter.write_process(idx, len(dataloader), epoch, write_batch_idx=50) # Write evaluation results average_meter.write_result('Training' if training else 'Validation', epoch) avg_loss = utils.mean(average_meter.loss_buf) miou, fb_iou = average_meter.compute_iou() return avg_loss, miou, fb_iou if __name__ == '__main__': # Arguments parsing parser = argparse.ArgumentParser(description='Hypercorrelation Squeeze Pytorch Implementation') parser.add_argument('--datapath', type=str, default='fewshot_data/Datasets_HSN') parser.add_argument('--benchmark', type=str, default='pascal', choices=['pascal', 'coco', 'fss']) parser.add_argument('--logpath', type=str, default='') parser.add_argument('--bsz', type=int, default=20) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--niter', type=int, default=2000) parser.add_argument('--nworker', type=int, default=8) parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3]) parser.add_argument('--backbone', type=str, default='resnet101', choices=['vgg16', 'resnet50', 'resnet101']) args = parser.parse_args() Logger.initialize(args, training=True) # Model initialization model = HypercorrSqueezeNetwork(args.backbone, False) Logger.log_params(model) # Device setup device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") Logger.info('# available GPUs: %d' % torch.cuda.device_count()) model = nn.DataParallel(model) model.to(device) # Helper classes (for training) initialization optimizer = optim.Adam([{"params": model.parameters(), "lr": args.lr}]) Evaluator.initialize() # Dataset initialization FSSDataset.initialize(img_size=400, datapath=args.datapath, use_original_imgsize=False) dataloader_trn = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'trn') dataloader_val = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'val') # Train HSNet best_val_miou = float('-inf') best_val_loss = float('inf') for epoch in range(args.niter): trn_loss, trn_miou, trn_fb_iou = train(epoch, model, dataloader_trn, optimizer, training=True) with torch.no_grad(): val_loss, val_miou, val_fb_iou = train(epoch, model, dataloader_val, optimizer, training=False) # Save the best model if val_miou > best_val_miou: best_val_miou = val_miou Logger.save_model_miou(model, epoch, val_miou) Logger.tbd_writer.add_scalars('fewshot_data/data/loss', {'trn_loss': trn_loss, 'val_loss': val_loss}, epoch) Logger.tbd_writer.add_scalars('fewshot_data/data/miou', {'trn_miou': trn_miou, 'val_miou': val_miou}, epoch) Logger.tbd_writer.add_scalars('fewshot_data/data/fb_iou', {'trn_fb_iou': trn_fb_iou, 'val_fb_iou': val_fb_iou}, epoch) Logger.tbd_writer.flush() Logger.tbd_writer.close() Logger.info('==================== Finished Training ====================')