app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,141 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
|
|
4 |
|
5 |
ENDPOINT_URL = "https://x6leavj4hgm2fdyx.us-east-2.aws.endpoints.huggingface.cloud"
|
6 |
|
7 |
-
def respond(
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
-
|
20 |
for chunk in client.chat_completion(
|
21 |
messages=messages,
|
22 |
max_tokens=max_tokens,
|
23 |
-
stream=True,
|
24 |
temperature=temperature,
|
25 |
top_p=top_p,
|
|
|
26 |
):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
except Exception as e:
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
chatbot = gr.ChatInterface(
|
35 |
respond,
|
36 |
-
type="messages",
|
37 |
additional_inputs=[
|
38 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
39 |
-
gr.Slider(1,
|
40 |
-
gr.Slider(0.
|
41 |
-
gr.Slider(0.
|
42 |
-
gr.Textbox(lines=1, type="password", placeholder="hf_... token", label="HF PAT (with endpoint write)"),
|
43 |
],
|
44 |
)
|
45 |
|
46 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
chatbot.render()
|
48 |
|
49 |
if __name__ == "__main__":
|
50 |
-
# Or export HUGGINGFACEHUB_API_TOKEN in your shell and leave the textbox empty.
|
51 |
demo.launch()
|
52 |
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from typing import List, Dict
|
4 |
|
5 |
ENDPOINT_URL = "https://x6leavj4hgm2fdyx.us-east-2.aws.endpoints.huggingface.cloud"
|
6 |
|
7 |
+
def respond(
|
8 |
+
user_msg: str,
|
9 |
+
history: List[Dict[str, str]],
|
10 |
+
system_message: str,
|
11 |
+
max_tokens: int,
|
12 |
+
temperature: float,
|
13 |
+
top_p: float,
|
14 |
+
hf_token: gr.OAuthToken,
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
Streams chat responses from a Hugging Face Inference Endpoint.
|
18 |
|
19 |
+
Notes:
|
20 |
+
- Requires your endpoint to allow inference with your token (permission:
|
21 |
+
`inference.endpoints.infer.write`).
|
22 |
+
- If the endpoint doesn't support OpenAI-style /v1/chat (e.g., plain TGI),
|
23 |
+
we fallback to a single-prompt `.text_generation()` call using a simple
|
24 |
+
prompt format built from the chat history.
|
25 |
+
"""
|
26 |
+
# 1) Client that talks directly to your endpoint
|
27 |
+
client = InferenceClient(
|
28 |
+
base_url=ENDPOINT_URL,
|
29 |
+
token=hf_token.token, # uses the OAuth token from the LoginButton
|
30 |
+
)
|
31 |
|
32 |
+
# 2) Build OpenAI-style messages for chat backends
|
33 |
+
messages = []
|
34 |
+
if system_message:
|
35 |
+
messages.append({"role": "system", "content": system_message})
|
36 |
|
37 |
+
# Gradio gives `history` as a list of {"role": "...", "content": "..."} when type="messages"
|
38 |
+
# Append previous turns, then the new user message
|
39 |
+
messages.extend(history or [])
|
40 |
+
messages.append({"role": "user", "content": user_msg})
|
41 |
+
|
42 |
+
# 3) Try OpenAI-style chat first (works if your endpoint exposes /v1/chat/completions)
|
43 |
try:
|
44 |
+
response_text = ""
|
45 |
for chunk in client.chat_completion(
|
46 |
messages=messages,
|
47 |
max_tokens=max_tokens,
|
|
|
48 |
temperature=temperature,
|
49 |
top_p=top_p,
|
50 |
+
stream=True,
|
51 |
):
|
52 |
+
# chunk.choices[0].delta.content is the streamed token (if present)
|
53 |
+
token = ""
|
54 |
+
if getattr(chunk, "choices", None) and getattr(chunk.choices[0], "delta", None):
|
55 |
+
token = chunk.choices[0].delta.content or ""
|
56 |
+
response_text += token
|
57 |
+
yield response_text
|
58 |
+
return # success via chat api
|
59 |
except Exception as e:
|
60 |
+
# If chat endpoint isn't available, fall back to text_generation
|
61 |
+
# (common when the endpoint is plain TGI without OpenAI route enabled)
|
62 |
+
fallback_reason = str(e)
|
63 |
+
|
64 |
+
# 4) Fallback: Plain text generation with a simple chat-to-prompt adapter
|
65 |
+
try:
|
66 |
+
def to_plain_prompt(msgs: List[Dict[str, str]]) -> str:
|
67 |
+
lines = []
|
68 |
+
for m in msgs:
|
69 |
+
role = m.get("role", "user")
|
70 |
+
content = m.get("content", "")
|
71 |
+
if role == "system":
|
72 |
+
lines.append(f"[SYSTEM] {content}")
|
73 |
+
elif role == "user":
|
74 |
+
lines.append(f"[USER] {content}")
|
75 |
+
else:
|
76 |
+
lines.append(f"[ASSISTANT] {content}")
|
77 |
+
lines.append("[ASSISTANT]") # cue the model to speak
|
78 |
+
return "\n".join(lines)
|
79 |
+
|
80 |
+
prompt = to_plain_prompt(messages)
|
81 |
+
|
82 |
+
response_text = ""
|
83 |
+
# stream text_generation tokens if the backend supports it
|
84 |
+
for tok in client.text_generation(
|
85 |
+
prompt,
|
86 |
+
max_new_tokens=max_tokens,
|
87 |
+
temperature=temperature,
|
88 |
+
top_p=top_p,
|
89 |
+
stream=True,
|
90 |
+
# Many TGI backends respect these kwargs; safe to include
|
91 |
+
return_full_text=False,
|
92 |
+
):
|
93 |
+
# `tok` can be a string or an object depending on server; normalize to str
|
94 |
+
piece = getattr(tok, "token", tok)
|
95 |
+
if isinstance(piece, dict) and "text" in piece:
|
96 |
+
piece = piece["text"]
|
97 |
+
piece = str(piece)
|
98 |
+
response_text += piece
|
99 |
+
yield response_text
|
100 |
+
|
101 |
+
except Exception as e2:
|
102 |
+
# Surface a readable error in the chat window
|
103 |
+
err = (
|
104 |
+
"Failed to query the endpoint.\n\n"
|
105 |
+
f"- Chat attempt error: {fallback_reason}\n"
|
106 |
+
f"- Text-generation fallback error: {e2}\n\n"
|
107 |
+
"Check that your endpoint is running, your token has "
|
108 |
+
"`inference.endpoints.infer.write`, and the runtime supports either "
|
109 |
+
"OpenAI chat (/v1/chat/completions) or TGI text-generation."
|
110 |
+
)
|
111 |
+
yield err
|
112 |
+
|
113 |
|
114 |
+
# --- Gradio UI ---
|
115 |
chatbot = gr.ChatInterface(
|
116 |
respond,
|
117 |
+
type="messages", # history comes as [{"role": "...", "content": "..."}]
|
118 |
additional_inputs=[
|
119 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
120 |
+
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
121 |
+
gr.Slider(minimum=0.0, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
122 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
123 |
],
|
124 |
)
|
125 |
|
126 |
with gr.Blocks() as demo:
|
127 |
+
with gr.Sidebar():
|
128 |
+
gr.Markdown("### Hugging Face Login")
|
129 |
+
# This provides `hf_token: gr.OAuthToken` to `respond`
|
130 |
+
gr.LoginButton()
|
131 |
+
gr.Markdown(
|
132 |
+
"Make sure your token has **`inference.endpoints.infer.write`** permission."
|
133 |
+
)
|
134 |
+
gr.Markdown(
|
135 |
+
f"**Endpoint**:\n\n`{ENDPOINT_URL}`"
|
136 |
+
)
|
137 |
chatbot.render()
|
138 |
|
139 |
if __name__ == "__main__":
|
|
|
140 |
demo.launch()
|
141 |
|