import gradio as gr from huggingface_hub import InferenceClient from typing import List, Dict, Optional # Your endpoint root (no trailing /v1 here; the client adds it for chat) ENDPOINT_URL = "https://x6leavj4hgm2fdyx.us-east-2.aws.endpoints.huggingface.cloud/v1/" def respond( user_msg: str, history: List[Dict[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, hf_token: Optional[gr.OAuthToken], # from LoginButton (kept) pat_override: str, # NEW: user-pasted PAT (password field) ): """ Use PAT override if provided; otherwise fall back to LoginButton token. NOTE: OAuth token from LoginButton usually lacks `inference.endpoints.infer.write`, so for Inference Endpoints you almost always need to paste a PAT here. """ # Choose a token: prefer user-supplied PAT with endpoints write scope token = pat_override.strip() or (getattr(hf_token, "token", None) if hf_token else None) if not token: yield "🔒 Please click **Login** OR paste a **Hugging Face PAT** with `inference.endpoints.infer.write`." return client = InferenceClient(base_url=ENDPOINT_URL, token=token) # Build messages (OpenAI-style) messages = [] if system_message: messages.append({"role": "system", "content": system_message}) messages.extend(history or []) messages.append({"role": "user", "content": user_msg}) # Try OpenAI-compatible chat route first: /v1/chat/completions try: out = "" for chunk in client.chat_completion( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): tok = "" if getattr(chunk, "choices", None) and getattr(chunk.choices[0], "delta", None): tok = chunk.choices[0].delta.content or "" out += tok yield out return except Exception as e_chat: chat_err = str(e_chat) # Fallback to plain generation (for non-OpenAI runtimes) try: def to_prompt(msgs: List[Dict[str, str]]) -> str: lines = [] for m in msgs: role = m.get("role", "user") content = m.get("content", "") tag = {"system": "SYSTEM", "user": "USER"}.get(role, "ASSISTANT") lines.append(f"[{tag}] {content}") lines.append("[ASSISTANT]") return "\n".join(lines) prompt = to_prompt(messages) out = "" for tok in client.text_generation( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, return_full_text=False, ): piece = getattr(tok, "token", tok) if isinstance(piece, dict) and "text" in piece: piece = piece["text"] out += str(piece) yield out except Exception as e_gen: yield ( "❗ Endpoint call failed.\n\n" f"• Chat API error: {chat_err}\n" f"• Text-generation fallback error: {e_gen}\n\n" "Most likely cause: the token used does NOT have `inference.endpoints.infer.write`.\n" "Paste a PAT with that scope in the sidebar." ) # --- UI --- chat = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(1, 4096, value=512, step=1, label="Max new tokens"), gr.Slider(0.0, 4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.0, 1.0, value=0.95, step=0.05, label="Top-p"), # NEW: secure PAT override gr.Textbox(value="", label="HF PAT (with `inference.endpoints.infer.write`)", type="password"), ], ) with gr.Blocks() as demo: with gr.Sidebar(): gr.Markdown("### Hugging Face Login (optional)") gr.LoginButton() gr.Markdown( "**Important:** Inference Endpoints require a PAT with\n" "`inference.endpoints.infer.write`. The Login token usually does **not** have this.\n" "Paste a PAT in the password field if you see 403 errors." ) gr.Markdown(f"**Endpoint**: `{ENDPOINT_URL}`") chat.render() if __name__ == "__main__": demo.launch()