Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,100 +8,59 @@ import torch
|
|
| 8 |
tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/araT5-base")
|
| 9 |
model = T5ForConditionalGeneration.from_pretrained("UBC-NLP/araT5-base")
|
| 10 |
|
| 11 |
-
# Emotion classification pipeline
|
| 12 |
emotion_classifier = pipeline("text-classification", model="aubmindlab/bert-base-arabertv2")
|
| 13 |
|
| 14 |
# Function to get embeddings from ARAT5 for topic modeling
|
| 15 |
def generate_embeddings(texts):
|
| 16 |
-
# Tokenize the Arabic text for ARAT5
|
| 17 |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 18 |
with torch.no_grad():
|
| 19 |
-
# Use ARAT5 to generate embeddings
|
| 20 |
outputs = model.encoder(input_ids=inputs['input_ids'])
|
| 21 |
-
|
| 22 |
-
return
|
| 23 |
|
| 24 |
-
# Function to process the CSV
|
| 25 |
def process_file(uploaded_file):
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
df['date'] = pd.to_datetime(df['date'], errors='coerce')
|
|
|
|
| 35 |
df['year'] = df['date'].dt.year
|
| 36 |
|
| 37 |
-
|
| 38 |
-
texts = df['poem'].dropna().tolist() # Replace 'poem' with your actual column name
|
| 39 |
-
|
| 40 |
-
# Emotion Classification: Classify emotions for each poem (Arabic)
|
| 41 |
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
|
| 42 |
df['emotion'] = emotions
|
| 43 |
|
| 44 |
-
# Topic Modeling using ARAT5 embeddings
|
| 45 |
embeddings = generate_embeddings(texts)
|
| 46 |
topic_model = BERTopic()
|
| 47 |
topics, _ = topic_model.fit_transform(embeddings)
|
| 48 |
df['topic'] = topics
|
| 49 |
-
|
| 50 |
-
# Return the processed dataframe
|
| 51 |
return df
|
| 52 |
|
| 53 |
# Streamlit App
|
| 54 |
-
st.title("Arabic Poem Topic Modeling & Emotion Classification
|
| 55 |
-
st.
|
| 56 |
-
|
| 57 |
-
# File upload widget
|
| 58 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
| 59 |
|
| 60 |
-
# If file is uploaded, process and display results
|
| 61 |
if uploaded_file is not None:
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
# Filter data based on selected date range
|
| 70 |
-
filtered_df = result_df[(result_df['date'] >= start_date) & (result_df['date'] <= end_date)]
|
| 71 |
-
|
| 72 |
-
# Display filtered data
|
| 73 |
-
st.write(f"Filtered Data (Poems from {start_date} to {end_date}):")
|
| 74 |
-
st.write(filtered_df[['poet_name', 'era', 'poem', 'emotion', 'topic', 'date']])
|
| 75 |
-
|
| 76 |
-
# Create buttons to show different summaries
|
| 77 |
-
summary_type = st.radio("Select Summary Type:",
|
| 78 |
-
("Emotion and Topic Summary by Date Range",
|
| 79 |
-
"Global Emotion and Topic Summary"))
|
| 80 |
-
|
| 81 |
-
# Display the selected summary
|
| 82 |
-
if summary_type == "Emotion and Topic Summary by Date Range":
|
| 83 |
-
st.write("Emotion and Topic Summary for Selected Date Range:")
|
| 84 |
-
|
| 85 |
-
# Emotion Distribution in Date Range
|
| 86 |
-
emotion_counts = filtered_df['emotion'].value_counts()
|
| 87 |
-
st.write("Emotion Counts in Date Range:")
|
| 88 |
-
st.write(emotion_counts)
|
| 89 |
-
|
| 90 |
-
# Topic Distribution in Date Range
|
| 91 |
-
topic_counts = filtered_df['topic'].value_counts()
|
| 92 |
-
st.write("Topic Counts in Date Range:")
|
| 93 |
-
st.write(topic_counts)
|
| 94 |
-
|
| 95 |
-
# Visualize emotion distribution over the selected range (optional)
|
| 96 |
-
st.bar_chart(emotion_counts, use_container_width=True)
|
| 97 |
-
|
| 98 |
-
# Visualize topic distribution over the selected range (optional)
|
| 99 |
-
st.bar_chart(topic_counts, use_container_width=True)
|
| 100 |
-
|
| 101 |
-
elif summary_type == "Global Emotion and Topic Summary":
|
| 102 |
-
st.write("Global Emotion and Topic Summary (All Poems):")
|
| 103 |
-
global_emotion_count = result_df['emotion'].value_counts().to_dict()
|
| 104 |
-
global_topic_count = result_df['topic'].value_counts().to_dict()
|
| 105 |
-
|
| 106 |
-
st.write(f"Emotion Distribution: {global_emotion_count}")
|
| 107 |
-
st.write(f"Topic Distribution: {global_topic_count}")
|
|
|
|
| 8 |
tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/araT5-base")
|
| 9 |
model = T5ForConditionalGeneration.from_pretrained("UBC-NLP/araT5-base")
|
| 10 |
|
| 11 |
+
# Emotion classification pipeline
|
| 12 |
emotion_classifier = pipeline("text-classification", model="aubmindlab/bert-base-arabertv2")
|
| 13 |
|
| 14 |
# Function to get embeddings from ARAT5 for topic modeling
|
| 15 |
def generate_embeddings(texts):
|
|
|
|
| 16 |
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 17 |
with torch.no_grad():
|
|
|
|
| 18 |
outputs = model.encoder(input_ids=inputs['input_ids'])
|
| 19 |
+
embeddings = outputs[0].mean(dim=1).numpy()
|
| 20 |
+
return embeddings
|
| 21 |
|
| 22 |
+
# Function to process the CSV or Excel file
|
| 23 |
def process_file(uploaded_file):
|
| 24 |
+
# Determine the file type
|
| 25 |
+
if uploaded_file.name.endswith(".csv"):
|
| 26 |
+
df = pd.read_csv(uploaded_file)
|
| 27 |
+
elif uploaded_file.name.endswith(".xlsx"):
|
| 28 |
+
df = pd.read_excel(uploaded_file)
|
| 29 |
+
else:
|
| 30 |
+
st.error("Unsupported file format.")
|
| 31 |
+
return None
|
| 32 |
+
|
| 33 |
+
# Validate required columns
|
| 34 |
+
required_columns = ['date', 'poem']
|
| 35 |
+
missing_columns = [col for col in required_columns if col not in df.columns]
|
| 36 |
+
if missing_columns:
|
| 37 |
+
st.error(f"Missing columns: {', '.join(missing_columns)}")
|
| 38 |
+
return None
|
| 39 |
|
| 40 |
+
# Process the file
|
| 41 |
+
df['date'] = pd.to_datetime(df['date'], errors='coerce')
|
| 42 |
+
df = df.dropna(subset=['date'])
|
| 43 |
df['year'] = df['date'].dt.year
|
| 44 |
|
| 45 |
+
texts = df['poem'].dropna().tolist()
|
|
|
|
|
|
|
|
|
|
| 46 |
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
|
| 47 |
df['emotion'] = emotions
|
| 48 |
|
|
|
|
| 49 |
embeddings = generate_embeddings(texts)
|
| 50 |
topic_model = BERTopic()
|
| 51 |
topics, _ = topic_model.fit_transform(embeddings)
|
| 52 |
df['topic'] = topics
|
|
|
|
|
|
|
| 53 |
return df
|
| 54 |
|
| 55 |
# Streamlit App
|
| 56 |
+
st.title("Arabic Poem Topic Modeling & Emotion Classification")
|
| 57 |
+
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
|
|
|
|
|
|
|
|
|
|
| 58 |
|
|
|
|
| 59 |
if uploaded_file is not None:
|
| 60 |
+
try:
|
| 61 |
+
result_df = process_file(uploaded_file)
|
| 62 |
+
if result_df is not None:
|
| 63 |
+
st.write("Data successfully processed!")
|
| 64 |
+
st.write(result_df.head())
|
| 65 |
+
except Exception as e:
|
| 66 |
+
st.error(f"Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|