Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,7 +19,8 @@ def generate_embeddings(texts):
|
|
| 19 |
|
| 20 |
for text in texts:
|
| 21 |
# Tokenize the text with truncation set to False
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
# Split the tokens into chunks of size 512 (maximum length)
|
| 25 |
chunked_texts = [tokens[i:i + 512] for i in range(0, len(tokens), 512)]
|
|
@@ -27,11 +28,11 @@ def generate_embeddings(texts):
|
|
| 27 |
poem_embeddings = []
|
| 28 |
|
| 29 |
for chunk in chunked_texts:
|
| 30 |
-
#
|
| 31 |
inputs = torch.tensor(chunk).unsqueeze(0) # Adding batch dimension
|
| 32 |
with torch.no_grad():
|
| 33 |
outputs = bert_model(inputs)
|
| 34 |
-
# Get the embeddings from the last hidden state
|
| 35 |
chunk_embedding = outputs.last_hidden_state.mean(dim=1).numpy()
|
| 36 |
|
| 37 |
poem_embeddings.append(chunk_embedding)
|
|
|
|
| 19 |
|
| 20 |
for text in texts:
|
| 21 |
# Tokenize the text with truncation set to False
|
| 22 |
+
# We are using the BertTokenizer directly without using the pipeline
|
| 23 |
+
tokens = bert_tokenizer.encode(text, add_special_tokens=True, truncation=False, padding=False)
|
| 24 |
|
| 25 |
# Split the tokens into chunks of size 512 (maximum length)
|
| 26 |
chunked_texts = [tokens[i:i + 512] for i in range(0, len(tokens), 512)]
|
|
|
|
| 28 |
poem_embeddings = []
|
| 29 |
|
| 30 |
for chunk in chunked_texts:
|
| 31 |
+
# Convert the chunk to a tensor and prepare the input for BERT model
|
| 32 |
inputs = torch.tensor(chunk).unsqueeze(0) # Adding batch dimension
|
| 33 |
with torch.no_grad():
|
| 34 |
outputs = bert_model(inputs)
|
| 35 |
+
# Get the embeddings from the last hidden state (mean of all token embeddings)
|
| 36 |
chunk_embedding = outputs.last_hidden_state.mean(dim=1).numpy()
|
| 37 |
|
| 38 |
poem_embeddings.append(chunk_embedding)
|