Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,25 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
from
|
| 4 |
-
from transformers import pipeline
|
| 5 |
from bertopic import BERTopic
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def process_file(uploaded_file):
|
| 12 |
# Load CSV
|
| 13 |
df = pd.read_csv(uploaded_file)
|
|
@@ -19,13 +31,14 @@ def process_file(uploaded_file):
|
|
| 19 |
# Preprocess the text: assuming the CSV has a 'text' column
|
| 20 |
texts = df['text'].dropna().tolist() # Modify this according to your column name
|
| 21 |
|
| 22 |
-
# Emotion Classification: Classify emotions for each text
|
| 23 |
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
|
| 24 |
df['emotion'] = emotions
|
| 25 |
|
| 26 |
-
# Topic Modeling using
|
|
|
|
| 27 |
topic_model = BERTopic()
|
| 28 |
-
topics, _ = topic_model.fit_transform(
|
| 29 |
df['topic'] = topics
|
| 30 |
|
| 31 |
# Display the results
|
|
@@ -35,8 +48,8 @@ def process_file(uploaded_file):
|
|
| 35 |
return df
|
| 36 |
|
| 37 |
# Streamlit App
|
| 38 |
-
st.title("Topic Modeling & Emotion Classification")
|
| 39 |
-
st.write("Upload a CSV file to perform topic modeling and emotion classification on
|
| 40 |
|
| 41 |
# File upload widget
|
| 42 |
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline
|
|
|
|
| 4 |
from bertopic import BERTopic
|
| 5 |
+
import torch
|
| 6 |
|
| 7 |
+
# Initialize ARAT5 model and tokenizer for topic modeling
|
| 8 |
+
tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/araT5-base")
|
| 9 |
+
model = T5ForConditionalGeneration.from_pretrained("UBC-NLP/araT5-base")
|
| 10 |
|
| 11 |
+
# Emotion classification pipeline for Arabic (use an Arabic emotion classification model)
|
| 12 |
+
emotion_classifier = pipeline("text-classification", model="d0r13n/ara-bert-base-arabic-emotion")
|
| 13 |
+
|
| 14 |
+
# Function to get embeddings from ARAT5 for topic modeling
|
| 15 |
+
def generate_embeddings(texts):
|
| 16 |
+
# Tokenize the Arabic text for ARAT5
|
| 17 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 18 |
+
with torch.no_grad():
|
| 19 |
+
outputs = model.encoder(input_ids=inputs['input_ids'])
|
| 20 |
+
return outputs.last_hidden_state.mean(dim=1).numpy()
|
| 21 |
+
|
| 22 |
+
# Function to process the CSV file and return emotion and topic model
|
| 23 |
def process_file(uploaded_file):
|
| 24 |
# Load CSV
|
| 25 |
df = pd.read_csv(uploaded_file)
|
|
|
|
| 31 |
# Preprocess the text: assuming the CSV has a 'text' column
|
| 32 |
texts = df['text'].dropna().tolist() # Modify this according to your column name
|
| 33 |
|
| 34 |
+
# Emotion Classification: Classify emotions for each text (Arabic)
|
| 35 |
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
|
| 36 |
df['emotion'] = emotions
|
| 37 |
|
| 38 |
+
# Topic Modeling using ARAT5 embeddings
|
| 39 |
+
embeddings = generate_embeddings(texts)
|
| 40 |
topic_model = BERTopic()
|
| 41 |
+
topics, _ = topic_model.fit_transform(embeddings)
|
| 42 |
df['topic'] = topics
|
| 43 |
|
| 44 |
# Display the results
|
|
|
|
| 48 |
return df
|
| 49 |
|
| 50 |
# Streamlit App
|
| 51 |
+
st.title("Arabic Topic Modeling & Emotion Classification with ARAT5")
|
| 52 |
+
st.write("Upload a CSV file to perform topic modeling and emotion classification on Arabic text.")
|
| 53 |
|
| 54 |
# File upload widget
|
| 55 |
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
|