|
import streamlit as st |
|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms, datasets, models |
|
from PIL import Image |
|
|
|
|
|
st.title("Brain Tumor Classification") |
|
|
|
|
|
class_names = ['glioma_tumor', 'meningioma_tumor', 'no_tumor', 'pituitary_tumor'] |
|
|
|
|
|
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT) |
|
num_of_classes = len(class_names) |
|
num_of_features = model.fc.in_features |
|
model.fc = nn.Linear(num_of_features, num_of_classes) |
|
|
|
|
|
model.load_state_dict(torch.load('resnet18_model (1).pth', map_location=torch.device('cpu'))) |
|
model.eval() |
|
|
|
|
|
uploaded_img = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_img is not None: |
|
|
|
image = Image.open(uploaded_img) |
|
st.image(image, caption="Uploaded Image", use_container_width =True) |
|
|
|
|
|
sample_transform = transforms.Compose([ |
|
transforms.Resize((224, 224)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.1776, 0.1776, 0.1776], std=[0.1735, 0.1735, 0.1735]) |
|
]) |
|
|
|
|
|
transformed_img = sample_transform(image).unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
pred = model(transformed_img).argmax(dim=1).item() |
|
|
|
|
|
st.success(f"Predicted Class: {class_names[pred]}") |
|
|