llm-demo / app.py
arhamm40182's picture
Initial Implementation
61c17d7
raw
history blame contribute delete
872 Bytes
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
return pipeline("text2text-generation", model=model, tokenizer=tokenizer)
st.set_page_config(page_title="LLM Demo", layout="centered")
st.title("πŸš€ FLAN-T5 Small - HuggingFace Demo")
pipe = load_model()
user_input = st.text_area("Enter your instruction or question:", "")
if st.button("Generate Response"):
if user_input.strip() == "":
st.warning("Please enter some text.")
else:
with st.spinner("Generating..."):
output = pipe(user_input, max_new_tokens=100)[0]["generated_text"]
st.success("### Response:")
st.write(output)