import gradio as gr from huggingface_hub import InferenceClient # Inference Client for Llama 3.2 client = InferenceClient("karrrr123456/aaaaaaaa") def respond( message, history: list[tuple[str, str]], system_message="You are a friendly AI assistant called ACE assisant made by ace.", max_tokens=512, temperature=0.7, top_p=0.95, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Minimalistic, Sleek Chatbot UI with gr.Blocks(theme="soft") as demo: gr.Markdown(""" # """) chatbot = gr.ChatInterface(respond) if __name__ == "__main__": demo.launch()