File size: 5,834 Bytes
e428475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b2ff7
 
 
 
 
 
 
 
 
 
 
 
e428475
 
 
92b2ff7
 
 
 
 
 
 
 
 
 
 
 
 
e428475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60c708b
 
e428475
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import os
import torch
import numpy as np
import random
from huggingface_hub import login, HfFolder
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from scipy.special import softmax
import logging

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')

# Set a seed for reproducibility
seed = 42
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
    torch.cuda.manual_seed_all(seed)


# Login to Hugging Face
token = os.getenv("hf_token")
HfFolder.save_token(token)
login(token)

# Model paths and quality mapping
model_paths = [
    'karths/binary_classification_train_test',
    'karths/binary_classification_train_requirement',
    "karths/binary_classification_train_process",
    "karths/binary_classification_train_infrastructure",
    "karths/binary_classification_train_documentation",
    "karths/binary_classification_train_design",
    "karths/binary_classification_train_defect",
    "karths/binary_classification_train_code",
    "karths/binary_classification_train_build",
    "karths/binary_classification_train_automation",
    "karths/binary_classification_train_people",
    "karths/binary_classification_train_architecture",
]

quality_mapping = {
    'binary_classification_train_test': 'Test',  
    'binary_classification_train_requirement': 'Requirement',
    'binary_classification_train_process': 'Process',
    'binary_classification_train_infrastructure': 'Infrastructure',
    'binary_classification_train_documentation': 'Documentation',
    'binary_classification_train_design': 'Design',
    'binary_classification_train_defect': 'Defect',
    'binary_classification_train_code': 'Code',
    'binary_classification_train_build': 'Build',
    'binary_classification_train_automation': 'Automation',
    'binary_classification_train_people': 'People',
    'binary_classification_train_architecture':'Architecture'
    
}

# Pre-load models and tokenizer
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths}

def get_quality_name(model_name):
    return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality")

def model_prediction(model, text, device):
    model.to(device)
    model.eval()

    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = softmax(logits.cpu().numpy(), axis=1)
    avg_prob = np.mean(probs[:, 1])
    
    return avg_prob

def main_interface(text):
    if not text.strip():
        return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", ""

        # Check for text length exceeding the limit
    if len(text) < 30:
        return "<div style='color: red;'>Text is less than 30 characters.</div>", ""
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    results = []
    for model_path, model in models.items():
        quality_name = get_quality_name(model_path)
        avg_prob = model_prediction(model, text, device)
        if avg_prob >= 0.90:  # Only consider probabilities >= 0.90
            results.append((quality_name, avg_prob))
        logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}")

    if not results:  # If no results meet the criteria
        return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold. </div>", ""

    top_qualities = sorted(results, key=lambda x: x[1], reverse=True)[:3]
    output_html = render_html_output(top_qualities)
    
    return output_html, ""

def render_html_output(top_qualities):
    styles = """
    <style>
        .quality-container {
            font-family: Arial, sans-serif;
            text-align: center;
            margin-top: 20px;
        }
        .quality-label, .ranking {
            display: inline-block;
            padding: 0.5em 1em;
            font-size: 18px;
            font-weight: bold;
            color: white;
            background-color: #007bff;
            border-radius: 0.5rem;
            margin-right: 10px;
            box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
        }
        .probability {
            display: block;
            margin-top: 10px;
            font-size: 16px;
            color: #007bff;
        }
    </style>
    """
    html_content = ""
    ranking_labels = ['Top 1 Prediction', 'Top 2 Prediction', 'Top 3 Prediction']
    top_n = min(len(top_qualities), len(ranking_labels))
    for i in range(top_n):
        quality, prob = top_qualities[i]
        html_content += f"""
        <div class="quality-container">
            <span class="ranking">{ranking_labels[i]}</span>
            <span class="quality-label">{quality}</span>
        </div>
        """
    return styles + html_content

example_texts = [

    ["Issues with newer operating systems. The application fails to start or crashes shortly after launch, likely due to deprecated libraries.\n\nEnvironment: Desktop app version 1.8, Windows 11\nReproduction: Install on a system running Windows 11, attempt to launch the application."]  
    
]


interface = gr.Interface(
    fn=main_interface,
    inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"),
    outputs=[gr.HTML(label="Prediction Output"), gr.Textbox(label="Predictions", visible=False)],
    title="QualityTagger",
    description="This tool classifies text into different quality domains such as Security, Usability, etc.",
    examples=example_texts
)

interface.launch(share=True)