Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import torch | |
| import numpy as np | |
| import random | |
| from huggingface_hub import login, HfFolder | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from scipy.special import softmax | |
| import logging | |
| import spaces | |
| from threading import Thread | |
| from collections.abc import Iterator | |
| import csv | |
| from llama_cpp import Llama | |
| # Increase CSV field size limit | |
| csv.field_size_limit(1000000) | |
| # Setup logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') | |
| # Set a seed for reproducibility | |
| seed = 42 | |
| np.random.seed(seed) | |
| random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed_all(seed) | |
| # Login to Hugging Face | |
| token = os.getenv("hf_token") | |
| HfFolder.save_token(token) | |
| login(token) | |
| model_paths = [ | |
| 'karths/binary_classification_train_port', | |
| 'karths/binary_classification_train_perf', | |
| "karths/binary_classification_train_main", | |
| "karths/binary_classification_train_secu", | |
| "karths/binary_classification_train_reli", | |
| "karths/binary_classification_train_usab", | |
| "karths/binary_classification_train_comp" | |
| ] | |
| quality_mapping = { | |
| 'binary_classification_train_port': 'Portability', | |
| 'binary_classification_train_main': 'Maintainability', | |
| 'binary_classification_train_secu': 'Security', | |
| 'binary_classification_train_reli': 'Reliability', | |
| 'binary_classification_train_usab': 'Usability', | |
| 'binary_classification_train_perf': 'Performance', | |
| 'binary_classification_train_comp': 'Compatibility' | |
| } | |
| # Pre-load models and tokenizer for quality prediction | |
| tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") | |
| models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths} | |
| def get_quality_name(model_name): | |
| return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality") | |
| def model_prediction(model, text, device): | |
| model.to(device) | |
| model.eval() | |
| inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| probs = softmax(logits.cpu().numpy(), axis=1) | |
| avg_prob = np.mean(probs[:, 1]) | |
| model.to("cpu") | |
| return avg_prob | |
| # --- Llama CPP Model Setup with GPU --- | |
| LLAMA_MAX_MAX_NEW_TOKENS = 512 | |
| LLAMA_DEFAULT_MAX_NEW_TOKENS = 512 | |
| LLAMA_MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "1024")) | |
| # Check if GPU is available | |
| gpu_layers = None | |
| if torch.cuda.is_available(): | |
| # Use all GPU layers - you can adjust this number based on your GPU memory | |
| gpu_layers = -1 | |
| logging.info("GPU is available. Using GPU acceleration for llama-cpp.") | |
| else: | |
| logging.info("GPU is not available. Using CPU for llama-cpp.") | |
| # Initialize the Llama model with GPU acceleration | |
| llm = Llama.from_pretrained( | |
| repo_id="Qwen/Qwen2.5-1.5B-Instruct-GGUF", | |
| filename="*q8_0.gguf", # Using q8_0 quantization | |
| n_gpu_layers=gpu_layers, # Use GPU acceleration if available | |
| verbose=False | |
| ) | |
| def llama_generate( | |
| message: str, | |
| max_new_tokens: int = LLAMA_DEFAULT_MAX_NEW_TOKENS, | |
| temperature: float = 0.3, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> str: | |
| try: | |
| output = llm( | |
| message, | |
| max_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| top_k=top_k, | |
| repeat_penalty=repetition_penalty, | |
| echo=False, # Don't include the prompt in the output | |
| ) | |
| # Extract the generated text from the output | |
| return output['choices'][0]['text'] | |
| except Exception as e: | |
| logging.error(f"Error during Llama generation: {e}") | |
| return f"Error generating text: {str(e)}" | |
| def generate_explanation(issue_text, top_quality): | |
| """Generates an explanation for the *single* top quality above threshold.""" | |
| if not top_quality: | |
| return "<div style='color: red;'>No explanation available as no quality tags met the threshold.</div>" | |
| quality_name = top_quality[0] # Get the name of the top quality | |
| prompt = f""" | |
| Given the following issue description: | |
| --- | |
| {issue_text} | |
| --- | |
| Explain why this issue might be classified as a **{quality_name}** issue. Provide a concise explanation, relating it back to the issue description. Keep the explanation short and concise and dont include anything else. | |
| """ | |
| print(prompt) | |
| try: | |
| explanation = llama_generate(prompt) | |
| # Format for better readability, directly including the quality name. | |
| formatted_explanation = f"<p>{explanation}</p>" | |
| return f"<div style='overflow-y: scroll; max-height: 400px;'>{formatted_explanation}</div>" | |
| except Exception as e: | |
| logging.error(f"Error during Llama generation: {e}") | |
| return "<div style='color: red;'>An error occurred while generating the explanation.</div>" | |
| # @spaces.GPU(duration=60) | |
| def main_interface(text): | |
| if not text.strip(): | |
| return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", "", "" | |
| if len(text) < 30: | |
| return "<div style='color: red;'>Text is less than 30 characters.</div>", "", "" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| results = [] | |
| for model_path, model in models.items(): | |
| quality_name = get_quality_name(model_path) | |
| avg_prob = model_prediction(model, text, device) | |
| if avg_prob >= 0.95: # Keep *all* results above the threshold | |
| results.append((quality_name, avg_prob)) | |
| logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}") | |
| if not results: | |
| return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold.</div>", "", "" | |
| # Sort and get the top result (if any meet the threshold) | |
| top_result = sorted(results, key=lambda x: x[1], reverse=True) | |
| if top_result: | |
| top_quality = top_result[:1] # Select only the top result | |
| output_html = render_html_output(top_quality) | |
| explanation = generate_explanation(text, top_quality) | |
| else: # Handle case no predictions >= 0.95 | |
| output_html = "<div style='color: red;'>No quality tag met the prediction probability threshold (>= 0.95).</div>" | |
| explanation = "" | |
| return output_html, "", explanation | |
| def render_html_output(top_qualities): | |
| #Simplified to show only the top prediction | |
| styles = """ | |
| <style> | |
| .quality-container { | |
| font-family: Arial, sans-serif; | |
| text-align: center; | |
| margin-top: 20px; | |
| } | |
| .quality-label, .ranking { | |
| display: inline-block; | |
| padding: 0.5em 1em; | |
| font-size: 18px; | |
| font-weight: bold; | |
| color: white; | |
| background-color: #007bff; | |
| border-radius: 0.5rem; | |
| margin-right: 10px; | |
| box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2); | |
| } | |
| </style> | |
| """ | |
| if not top_qualities: # Handle empty case | |
| return styles + "<div class='quality-container'>No Top Prediction</div>" | |
| quality, _ = top_qualities[0] #We know there is only one | |
| html_content = f""" | |
| <div class="quality-container"> | |
| <span class="ranking">Top Prediction</span> | |
| <span class="quality-label">{quality}</span> | |
| </div> | |
| """ | |
| return styles + html_content | |
| example_texts = [ | |
| ["The algorithm does not accurately distinguish between the positive and negative classes during edge cases.\n\nEnvironment: Production\nReproduction: Run the classifier on the test dataset with known edge cases."], | |
| ["The regression tests do not cover scenarios involving concurrent user sessions.\n\nEnvironment: Test automation suite\nReproduction: Update the test scripts to include tests for concurrent sessions."], | |
| ["There is frequent miscommunication between the development and QA teams regarding feature specifications.\n\nEnvironment: Inter-team meetings\nReproduction: Audit recent communication logs and meeting notes between the teams."], | |
| ["The service-oriented architecture does not effectively isolate failures, leading to cascading failures across services.\n\nEnvironment: Microservices architecture\nReproduction: Simulate a service failure and observe the impact on other services."] | |
| ] | |
| # Improved CSS for better layout and appearance | |
| css = """ | |
| .quality-container { | |
| font-family: Arial, sans-serif; | |
| text-align: center; | |
| margin-top: 20px; | |
| padding: 10px; | |
| border: 1px solid #ddd; /* Added border */ | |
| border-radius: 8px; /* Rounded corners */ | |
| background-color: #f9f9f9; /* Light background */ | |
| } | |
| .quality-label, .ranking { | |
| display: inline-block; | |
| padding: 0.5em 1em; | |
| font-size: 18px; | |
| font-weight: bold; | |
| color: white; | |
| background-color: #007bff; | |
| border-radius: 0.5rem; | |
| margin-right: 10px; | |
| box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2); | |
| } | |
| #explanation { | |
| border: 1px solid #ccc; | |
| padding: 10px; | |
| margin-top: 10px; | |
| border-radius: 4px; | |
| background-color: #fff; /* White background for explanation */ | |
| overflow-y: auto; /* Ensure scrollbar appears if needed */ | |
| } | |
| """ | |
| interface = gr.Interface( | |
| fn=main_interface, | |
| inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"), | |
| outputs=[ | |
| gr.HTML(label="Prediction Output"), | |
| gr.Textbox(label="Predictions", visible=False), | |
| gr.Markdown(label="Explanation") | |
| ], | |
| title="QualityTagger", | |
| description="This tool classifies text into different quality domains such as Security, Usability, etc., and provides explanations.", | |
| examples=example_texts, | |
| css=css # Apply the CSS | |
| ) | |
| interface.launch(share=True) |