Spaces:
Sleeping
Sleeping
Create app_test.py
Browse files- app_test.py +241 -0
app_test.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
from huggingface_hub import login, HfFolder
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, TextIteratorStreamer
|
| 8 |
+
from scipy.special import softmax
|
| 9 |
+
import logging
|
| 10 |
+
import spaces
|
| 11 |
+
from threading import Thread
|
| 12 |
+
from collections.abc import Iterator
|
| 13 |
+
|
| 14 |
+
# Setup logging
|
| 15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
|
| 16 |
+
|
| 17 |
+
# Set a seed for reproducibility
|
| 18 |
+
seed = 42
|
| 19 |
+
np.random.seed(seed)
|
| 20 |
+
random.seed(seed)
|
| 21 |
+
torch.manual_seed(seed)
|
| 22 |
+
if torch.cuda.is_available():
|
| 23 |
+
torch.cuda.manual_seed_all(seed)
|
| 24 |
+
|
| 25 |
+
# Login to Hugging Face
|
| 26 |
+
token = os.getenv("hf_token")
|
| 27 |
+
HfFolder.save_token(token)
|
| 28 |
+
login(token)
|
| 29 |
+
|
| 30 |
+
# --- Quality Prediction Model Setup ---
|
| 31 |
+
model_paths = [
|
| 32 |
+
'karths/binary_classification_train_test',
|
| 33 |
+
"karths/binary_classification_train_process",
|
| 34 |
+
"karths/binary_classification_train_infrastructure",
|
| 35 |
+
"karths/binary_classification_train_documentation",
|
| 36 |
+
"karths/binary_classification_train_design",
|
| 37 |
+
"karths/binary_classification_train_defect",
|
| 38 |
+
"karths/binary_classification_train_code",
|
| 39 |
+
"karths/binary_classification_train_build",
|
| 40 |
+
"karths/binary_classification_train_automation",
|
| 41 |
+
"karths/binary_classification_train_people",
|
| 42 |
+
"karths/binary_classification_train_architecture",
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
quality_mapping = {
|
| 46 |
+
'binary_classification_train_test': 'Test',
|
| 47 |
+
'binary_classification_train_process': 'Process',
|
| 48 |
+
'binary_classification_train_infrastructure': 'Infrastructure',
|
| 49 |
+
'binary_classification_train_documentation': 'Documentation',
|
| 50 |
+
'binary_classification_train_design': 'Design',
|
| 51 |
+
'binary_classification_train_defect': 'Defect',
|
| 52 |
+
'binary_classification_train_code': 'Code',
|
| 53 |
+
'binary_classification_train_build': 'Build',
|
| 54 |
+
'binary_classification_train_automation': 'Automation',
|
| 55 |
+
'binary_classification_train_people': 'People',
|
| 56 |
+
'binary_classification_train_architecture': 'Architecture'
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
# Pre-load models and tokenizer for quality prediction
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
|
| 61 |
+
models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths}
|
| 62 |
+
|
| 63 |
+
def get_quality_name(model_name):
|
| 64 |
+
return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality")
|
| 65 |
+
|
| 66 |
+
@spaces.GPU
|
| 67 |
+
def model_prediction(model, text, device):
|
| 68 |
+
model.to(device)
|
| 69 |
+
model.eval()
|
| 70 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
| 71 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
outputs = model(**inputs)
|
| 74 |
+
logits = outputs.logits
|
| 75 |
+
probs = softmax(logits.cpu().numpy(), axis=1)
|
| 76 |
+
avg_prob = np.mean(probs[:, 1])
|
| 77 |
+
return avg_prob
|
| 78 |
+
|
| 79 |
+
# --- Llama 3.2 3B Model Setup ---
|
| 80 |
+
LLAMA_MAX_MAX_NEW_TOKENS = 2048
|
| 81 |
+
LLAMA_DEFAULT_MAX_NEW_TOKENS = 1024
|
| 82 |
+
LLAMA_MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 83 |
+
llama_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Explicitly define device
|
| 84 |
+
llama_model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
| 85 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(llama_model_id)
|
| 86 |
+
llama_model = AutoModelForCausalLM.from_pretrained(
|
| 87 |
+
llama_model_id,
|
| 88 |
+
device_map="auto", # Automatically distribute model across devices
|
| 89 |
+
torch_dtype=torch.bfloat16,
|
| 90 |
+
)
|
| 91 |
+
llama_model.eval()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@spaces.GPU(duration=90)
|
| 95 |
+
def llama_generate(
|
| 96 |
+
message: str,
|
| 97 |
+
max_new_tokens: int = LLAMA_DEFAULT_MAX_NEW_TOKENS,
|
| 98 |
+
temperature: float = 0.6,
|
| 99 |
+
top_p: float = 0.9,
|
| 100 |
+
top_k: int = 50,
|
| 101 |
+
repetition_penalty: float = 1.2,
|
| 102 |
+
) -> Iterator[str]:
|
| 103 |
+
|
| 104 |
+
input_ids = llama_tokenizer.encode(message, return_tensors="pt").to(llama_model.device)
|
| 105 |
+
|
| 106 |
+
if input_ids.shape[1] > LLAMA_MAX_INPUT_TOKEN_LENGTH:
|
| 107 |
+
input_ids = input_ids[:, -LLAMA_MAX_INPUT_TOKEN_LENGTH:]
|
| 108 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {LLAMA_MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 109 |
+
|
| 110 |
+
streamer = TextIteratorStreamer(llama_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
| 111 |
+
generate_kwargs = dict(
|
| 112 |
+
{"input_ids": input_ids},
|
| 113 |
+
streamer=streamer,
|
| 114 |
+
max_new_tokens=max_new_tokens,
|
| 115 |
+
do_sample=True,
|
| 116 |
+
top_p=top_p,
|
| 117 |
+
top_k=top_k,
|
| 118 |
+
temperature=temperature,
|
| 119 |
+
num_beams=1,
|
| 120 |
+
repetition_penalty=repetition_penalty,
|
| 121 |
+
)
|
| 122 |
+
t = Thread(target=llama_model.generate, kwargs=generate_kwargs)
|
| 123 |
+
t.start()
|
| 124 |
+
outputs = []
|
| 125 |
+
for text in streamer:
|
| 126 |
+
outputs.append(text)
|
| 127 |
+
yield "".join(outputs)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def generate_explanation(issue_text, top_qualities):
|
| 132 |
+
"""Generates an explanation using Llama 3.2 3B."""
|
| 133 |
+
if not top_qualities:
|
| 134 |
+
return "No explanation available as no quality tags were predicted."
|
| 135 |
+
|
| 136 |
+
prompt = f"""
|
| 137 |
+
Given the following issue description:
|
| 138 |
+
---
|
| 139 |
+
{issue_text}
|
| 140 |
+
---
|
| 141 |
+
Explain why this issue might be classified under the following quality categories: {', '.join([q[0] for q in top_qualities])}.
|
| 142 |
+
Provide a concise explanation for each category, relating it back to the issue description.
|
| 143 |
+
"""
|
| 144 |
+
explanation = ""
|
| 145 |
+
try:
|
| 146 |
+
for chunk in llama_generate(prompt):
|
| 147 |
+
explanation += chunk # Accumulate generated text
|
| 148 |
+
except Exception as e:
|
| 149 |
+
logging.error(f"Error during Llama generation: {e}")
|
| 150 |
+
return "An error occurred while generating the explanation."
|
| 151 |
+
|
| 152 |
+
return explanation
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def main_interface(text):
|
| 156 |
+
if not text.strip():
|
| 157 |
+
return "<div style='color: red;'>No text provided. Please enter a valid issue description.</div>", "", ""
|
| 158 |
+
|
| 159 |
+
if len(text) < 30:
|
| 160 |
+
return "<div style='color: red;'>Text is less than 30 characters.</div>", "", ""
|
| 161 |
+
|
| 162 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 163 |
+
results = []
|
| 164 |
+
for model_path, model in models.items():
|
| 165 |
+
quality_name = get_quality_name(model_path)
|
| 166 |
+
avg_prob = model_prediction(model, text, device)
|
| 167 |
+
if avg_prob >= 0.95:
|
| 168 |
+
results.append((quality_name, avg_prob))
|
| 169 |
+
logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}")
|
| 170 |
+
|
| 171 |
+
if not results:
|
| 172 |
+
return "<div style='color: red;'>No recommendation. Prediction probability is below the threshold. </div>", "", ""
|
| 173 |
+
|
| 174 |
+
top_qualities = sorted(results, key=lambda x: x[1], reverse=True)[:3]
|
| 175 |
+
output_html = render_html_output(top_qualities)
|
| 176 |
+
|
| 177 |
+
# Generate explanation using the top qualities and the original input text
|
| 178 |
+
explanation = generate_explanation(text, top_qualities)
|
| 179 |
+
|
| 180 |
+
return output_html, "", explanation # Return explanation as the third output
|
| 181 |
+
|
| 182 |
+
def render_html_output(top_qualities):
|
| 183 |
+
styles = """
|
| 184 |
+
<style>
|
| 185 |
+
.quality-container {
|
| 186 |
+
font-family: Arial, sans-serif;
|
| 187 |
+
text-align: center;
|
| 188 |
+
margin-top: 20px;
|
| 189 |
+
}
|
| 190 |
+
.quality-label, .ranking {
|
| 191 |
+
display: inline-block;
|
| 192 |
+
padding: 0.5em 1em;
|
| 193 |
+
font-size: 18px;
|
| 194 |
+
font-weight: bold;
|
| 195 |
+
color: white;
|
| 196 |
+
background-color: #007bff;
|
| 197 |
+
border-radius: 0.5rem;
|
| 198 |
+
margin-right: 10px;
|
| 199 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
| 200 |
+
}
|
| 201 |
+
.probability {
|
| 202 |
+
display: block;
|
| 203 |
+
margin-top: 10px;
|
| 204 |
+
font-size: 16px;
|
| 205 |
+
color: #007bff;
|
| 206 |
+
}
|
| 207 |
+
</style>
|
| 208 |
+
"""
|
| 209 |
+
html_content = ""
|
| 210 |
+
ranking_labels = ['Top 1 Prediction', 'Top 2 Prediction', 'Top 3 Prediction']
|
| 211 |
+
top_n = min(len(top_qualities), len(ranking_labels))
|
| 212 |
+
for i in range(top_n):
|
| 213 |
+
quality, prob = top_qualities[i]
|
| 214 |
+
html_content += f"""
|
| 215 |
+
<div class="quality-container">
|
| 216 |
+
<span class="ranking">{ranking_labels[i]}</span>
|
| 217 |
+
<span class="quality-label">{quality}</span>
|
| 218 |
+
</div>
|
| 219 |
+
"""
|
| 220 |
+
return styles + html_content
|
| 221 |
+
|
| 222 |
+
example_texts = [
|
| 223 |
+
["The algorithm does not accurately distinguish between the positive and negative classes during edge cases.\n\nEnvironment: Production\nReproduction: Run the classifier on the test dataset with known edge cases."],
|
| 224 |
+
["The regression tests do not cover scenarios involving concurrent user sessions.\n\nEnvironment: Test automation suite\nReproduction: Update the test scripts to include tests for concurrent sessions."],
|
| 225 |
+
["There is frequent miscommunication between the development and QA teams regarding feature specifications.\n\nEnvironment: Inter-team meetings\nReproduction: Audit recent communication logs and meeting notes between the teams."],
|
| 226 |
+
["The service-oriented architecture does not effectively isolate failures, leading to cascading failures across services.\n\nEnvironment: Microservices architecture\nReproduction: Simulate a service failure and observe the impact on other services."]
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
interface = gr.Interface(
|
| 230 |
+
fn=main_interface,
|
| 231 |
+
inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"),
|
| 232 |
+
outputs=[
|
| 233 |
+
gr.HTML(label="Prediction Output"),
|
| 234 |
+
gr.Textbox(label="Predictions", visible=False),
|
| 235 |
+
gr.Textbox(label="Explanation", lines=5) # Added Textbox for explanation
|
| 236 |
+
],
|
| 237 |
+
title="QualityTagger",
|
| 238 |
+
description="This tool classifies text into different quality domains such as Security, Usability, etc., and provides explanations.",
|
| 239 |
+
examples=example_texts
|
| 240 |
+
)
|
| 241 |
+
interface.launch(share=True)
|