import gradio as gr import os import torch import numpy as np import random from huggingface_hub import login, HfFolder from transformers import AutoTokenizer, AutoModelForSequenceClassification from scipy.special import softmax import logging # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') # Set a seed for reproducibility seed = 42 np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # Login to Hugging Face token = os.getenv("hf_token") HfFolder.save_token(token) login(token) # Model paths and quality mapping model_paths = [ 'karths/binary_classification_train_test', 'karths/binary_classification_train_requirement', "karths/binary_classification_train_process", "karths/binary_classification_train_infrastructure", "karths/binary_classification_train_documentation", "karths/binary_classification_train_design", "karths/binary_classification_train_defect", "karths/binary_classification_train_code", "karths/binary_classification_train_build", "karths/binary_classification_train_automation", "karths/binary_classification_train_people", "karths/binary_classification_train_architecture", ] quality_mapping = { 'binary_classification_train_test': 'Test', 'binary_classification_train_requirement': 'Requirement', 'binary_classification_train_process': 'Process', 'binary_classification_train_infrastructure': 'Infrastructure', 'binary_classification_train_documentation': 'Documentation', 'binary_classification_train_design': 'Design', 'binary_classification_train_defect': 'Defect', 'binary_classification_train_code': 'Code', 'binary_classification_train_build': 'Build', 'binary_classification_train_automation': 'Automation', 'binary_classification_train_people': 'People', 'binary_classification_train_architecture':'Architecture' } # Pre-load models and tokenizer tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") models = {path: AutoModelForSequenceClassification.from_pretrained(path) for path in model_paths} def get_quality_name(model_name): return quality_mapping.get(model_name.split('/')[-1], "Unknown Quality") def model_prediction(model, text, device): model.to(device) model.eval() inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = softmax(logits.cpu().numpy(), axis=1) avg_prob = np.mean(probs[:, 1]) return avg_prob def main_interface(text): if not text.strip(): return "
No text provided. Please enter a valid issue description.
", "" # Check for text length exceeding the limit if len(text) < 30: return "
Text is less than 30 characters.
", "" device = "cuda" if torch.cuda.is_available() else "cpu" results = [] for model_path, model in models.items(): quality_name = get_quality_name(model_path) avg_prob = model_prediction(model, text, device) if avg_prob >= 0.90: # Only consider probabilities >= 0.90 results.append((quality_name, avg_prob)) logging.info(f"Model: {model_path}, Quality: {quality_name}, Average Probability: {avg_prob:.3f}") if not results: # If no results meet the criteria return "
No recommendation. Prediction probability is below the threshold.
", "" top_qualities = sorted(results, key=lambda x: x[1], reverse=True)[:3] output_html = render_html_output(top_qualities) return output_html, "" def render_html_output(top_qualities): styles = """ """ html_content = "" ranking_labels = ['Top 1 Prediction', 'Top 2 Prediction', 'Top 3 Prediction'] top_n = min(len(top_qualities), len(ranking_labels)) for i in range(top_n): quality, prob = top_qualities[i] html_content += f"""
{ranking_labels[i]} {quality}
""" return styles + html_content example_texts = [ ["Issues with newer operating systems. The application fails to start or crashes shortly after launch, likely due to deprecated libraries.\n\nEnvironment: Desktop app version 1.8, Windows 11\nReproduction: Install on a system running Windows 11, attempt to launch the application."] ] interface = gr.Interface( fn=main_interface, inputs=gr.Textbox(lines=7, label="Issue Description", placeholder="Enter your issue text here"), outputs=[gr.HTML(label="Prediction Output"), gr.Textbox(label="Predictions", visible=False)], title="QualityTagger", description="This tool classifies text into different quality domains such as Security, Usability, etc.", examples=example_texts ) interface.launch(share=True)