Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- .gitattributes +36 -35
- .gitignore +171 -0
- LICENSE +21 -0
- README.md +12 -12
- alarm.wav +3 -0
- app.py +82 -0
- haarcascade_files/haarcascade_eye.xml +0 -0
- haarcascade_files/haarcascade_frontalface_default.xml +0 -0
- requirements.txt +0 -0
- research/CV.ipynb +539 -0
- research/train.ipynb +0 -0
.gitattributes
CHANGED
@@ -1,35 +1,36 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
alarm.wav filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# PyPI configuration file
|
171 |
+
.pypirc
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Rohit-katkar2003
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
---
|
2 |
-
title: Drowsiness Detector
|
3 |
-
emoji: 🐢
|
4 |
-
colorFrom: pink
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.41.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Drowsiness Detector
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.41.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
alarm.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5787cf28ed4728fd26c5c7c4c4b658ee0869c3124a36a6a20e404d1046d52f65
|
3 |
+
size 1019502
|
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2 as cv
|
2 |
+
import numpy as np
|
3 |
+
import time
|
4 |
+
import pygame
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
classes = ['Closed', 'Open'] # Class labels for eyes only
|
8 |
+
|
9 |
+
# Load face and eye cascade classifiers
|
10 |
+
face_cascade = cv.CascadeClassifier("haarcascade files/haarcascade_frontalface_default.xml")
|
11 |
+
eye_cascade = cv.CascadeClassifier("haarcascade files/haarcascade_eye.xml")
|
12 |
+
|
13 |
+
# Initialize alarm
|
14 |
+
pygame.mixer.init()
|
15 |
+
pygame.mixer.music.load("alarm.wav")
|
16 |
+
|
17 |
+
# Track eye closure duration
|
18 |
+
closed_start_time = None
|
19 |
+
alarm_triggered = False
|
20 |
+
|
21 |
+
# Prepare the frame for eye detection
|
22 |
+
def prepare_frame(frame):
|
23 |
+
global closed_start_time, alarm_triggered
|
24 |
+
gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) # Convert to grayscale for better detection
|
25 |
+
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5)
|
26 |
+
eye_status = 'Closed'
|
27 |
+
|
28 |
+
for (x, y, w, h) in faces:
|
29 |
+
face_roi = frame[y:y+h, x:x+w]
|
30 |
+
roi_gray = gray_frame[y:y+h, x:x+w]
|
31 |
+
eyes = eye_cascade.detectMultiScale(roi_gray, scaleFactor=1.1, minNeighbors=5)
|
32 |
+
|
33 |
+
# If two or more eyes detected, classify as 'Open'
|
34 |
+
if len(eyes) >= 2:
|
35 |
+
eye_status = 'Open'
|
36 |
+
if alarm_triggered:
|
37 |
+
pygame.mixer.music.stop()
|
38 |
+
alarm_triggered = False
|
39 |
+
closed_start_time = None
|
40 |
+
else:
|
41 |
+
if closed_start_time is None:
|
42 |
+
closed_start_time = time.time()
|
43 |
+
elif time.time() - closed_start_time >= 3:
|
44 |
+
if not alarm_triggered:
|
45 |
+
pygame.mixer.music.play()
|
46 |
+
alarm_triggered = True
|
47 |
+
|
48 |
+
# Draw a rectangle around the entire face
|
49 |
+
cv.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
50 |
+
break # Stop after detecting the first face to avoid multiple rectangles
|
51 |
+
|
52 |
+
cv.putText(frame, eye_status, (20, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
53 |
+
return frame, eye_status
|
54 |
+
|
55 |
+
# Streamlit interface
|
56 |
+
st.title("Real-time Eye Detection and Drowsiness Alert")
|
57 |
+
st.markdown("**Close your eyes for 3 seconds to trigger the alarm.**")
|
58 |
+
|
59 |
+
FRAME_WINDOW = st.image([])
|
60 |
+
run = st.button("Start Detection")
|
61 |
+
stop = st.button("Stop Detection")
|
62 |
+
|
63 |
+
cap = cv.VideoCapture(0)
|
64 |
+
|
65 |
+
while run:
|
66 |
+
ret, frame = cap.read()
|
67 |
+
if not ret:
|
68 |
+
st.warning("Failed to access webcam.")
|
69 |
+
break
|
70 |
+
|
71 |
+
frame = cv.flip(frame, 1) # Flip frame horizontally
|
72 |
+
frame, eye_status = prepare_frame(frame)
|
73 |
+
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
74 |
+
FRAME_WINDOW.image(frame)
|
75 |
+
|
76 |
+
if stop:
|
77 |
+
cap.release()
|
78 |
+
cv.destroyAllWindows()
|
79 |
+
break
|
80 |
+
|
81 |
+
cap.release()
|
82 |
+
cv.destroyAllWindows()
|
haarcascade_files/haarcascade_eye.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
haarcascade_files/haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
File without changes
|
research/CV.ipynb
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os \n",
|
10 |
+
"import numpy as np \n",
|
11 |
+
"import pandas as pd \n",
|
12 |
+
"import matplotlib.pyplot as plt \n",
|
13 |
+
"import matplotlib.image as mimage \n",
|
14 |
+
"import cv2 as cv \n",
|
15 |
+
"import random \n",
|
16 |
+
"from PIL import Image\n",
|
17 |
+
" \n",
|
18 |
+
"import warnings \n",
|
19 |
+
"warnings.filterwarnings(\"ignore\")"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 2,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"data": {
|
29 |
+
"text/plain": [
|
30 |
+
"'d:\\\\Final _proj\\\\Driver Drawsines\\\\research'"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
"execution_count": 2,
|
34 |
+
"metadata": {},
|
35 |
+
"output_type": "execute_result"
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"source": [
|
39 |
+
"%pwd"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": 3,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"os.chdir(\"..\")"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 4,
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [
|
56 |
+
{
|
57 |
+
"data": {
|
58 |
+
"text/plain": [
|
59 |
+
"'d:\\\\Final _proj\\\\Driver Drawsines'"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
"execution_count": 4,
|
63 |
+
"metadata": {},
|
64 |
+
"output_type": "execute_result"
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"source": [
|
68 |
+
"%pwd"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 11,
|
74 |
+
"metadata": {},
|
75 |
+
"outputs": [
|
76 |
+
{
|
77 |
+
"name": "stderr",
|
78 |
+
"output_type": "stream",
|
79 |
+
"text": [
|
80 |
+
"WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
|
81 |
+
]
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"source": [
|
85 |
+
"from tensorflow.keras.models import load_model \n",
|
86 |
+
"model = load_model(\"drowiness_new6.h5\")"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "markdown",
|
91 |
+
"metadata": {},
|
92 |
+
"source": [
|
93 |
+
"## Final"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": null,
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"###"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "markdown",
|
107 |
+
"metadata": {},
|
108 |
+
"source": [
|
109 |
+
"### For Yawn , no-Yawn"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [
|
117 |
+
{
|
118 |
+
"name": "stdout",
|
119 |
+
"output_type": "stream",
|
120 |
+
"text": [
|
121 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 137ms/step\n",
|
122 |
+
"[[0.5339012 0.15986206 0.22364037 0.08259626]]\n",
|
123 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 147ms/step\n",
|
124 |
+
"[[0.55441564 0.16944881 0.19709249 0.07904309]]\n",
|
125 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step\n",
|
126 |
+
"[[0.4521452 0.13079698 0.31140834 0.10564953]]\n",
|
127 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step\n",
|
128 |
+
"[[0.5303667 0.16052838 0.22346936 0.08563555]]\n",
|
129 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step\n",
|
130 |
+
"[[0.5102811 0.15651394 0.24725401 0.08595096]]\n",
|
131 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step\n",
|
132 |
+
"[[0.39522764 0.5094784 0.08734289 0.00795105]]\n",
|
133 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
|
134 |
+
"[[0.4849061 0.5083012 0.00610906 0.0006836 ]]\n",
|
135 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 124ms/step\n",
|
136 |
+
"[[4.9457058e-01 4.9904898e-01 6.0036671e-03 3.7674789e-04]]\n",
|
137 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step\n",
|
138 |
+
"[[4.9783722e-01 4.9717689e-01 4.6812119e-03 3.0464309e-04]]\n",
|
139 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step\n",
|
140 |
+
"[[5.2321953e-01 4.6852756e-01 7.8288494e-03 4.2414822e-04]]\n",
|
141 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step\n",
|
142 |
+
"[[4.9153149e-01 5.0222409e-01 5.8816043e-03 3.6273352e-04]]\n",
|
143 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step\n",
|
144 |
+
"[[0.54127944 0.44826204 0.00961303 0.00084548]]\n",
|
145 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step\n",
|
146 |
+
"[[0.50393206 0.4863479 0.00865785 0.0010622 ]]\n",
|
147 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step\n",
|
148 |
+
"[[5.4283851e-01 4.5033500e-01 6.4291335e-03 3.9734103e-04]]\n",
|
149 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step\n",
|
150 |
+
"[[5.2413237e-01 4.7132316e-01 4.3296791e-03 2.1475746e-04]]\n",
|
151 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 102ms/step\n",
|
152 |
+
"[[5.1084113e-01 4.8559844e-01 3.2412172e-03 3.1920703e-04]]\n",
|
153 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step\n",
|
154 |
+
"[[5.7073164e-01 4.2556059e-01 3.4928408e-03 2.1485660e-04]]\n",
|
155 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step\n",
|
156 |
+
"[[5.5285156e-01 4.4224325e-01 4.5622713e-03 3.4294103e-04]]\n",
|
157 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step\n",
|
158 |
+
"[[0.5427735 0.44871727 0.00793501 0.00057425]]\n",
|
159 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step\n",
|
160 |
+
"[[5.4114133e-01 4.5342380e-01 5.1169088e-03 3.1804194e-04]]\n",
|
161 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step\n",
|
162 |
+
"[[5.7159519e-01 4.2561889e-01 2.5791947e-03 2.0669916e-04]]\n",
|
163 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 117ms/step\n",
|
164 |
+
"[[5.7468766e-01 4.2153805e-01 3.5532070e-03 2.2111020e-04]]\n",
|
165 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step\n",
|
166 |
+
"[[5.3590161e-01 4.5808852e-01 5.6171627e-03 3.9265043e-04]]\n",
|
167 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
168 |
+
"[[5.5657232e-01 4.3508846e-01 7.7924151e-03 5.4685154e-04]]\n",
|
169 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step\n",
|
170 |
+
"[[0.49480158 0.49675417 0.00781286 0.00063132]]\n",
|
171 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step\n",
|
172 |
+
"[[5.5822819e-01 4.3658417e-01 4.8851566e-03 3.0245088e-04]]\n",
|
173 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step\n",
|
174 |
+
"[[0.53632814 0.4521163 0.01081774 0.00073785]]\n",
|
175 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step\n",
|
176 |
+
"[[0.5257215 0.4666978 0.00665365 0.00092702]]\n",
|
177 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step\n",
|
178 |
+
"[[0.56758076 0.42414907 0.00691421 0.00135598]]\n",
|
179 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
180 |
+
"[[0.5783753 0.41040668 0.01005661 0.00116142]]\n",
|
181 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 123ms/step\n",
|
182 |
+
"[[0.61831737 0.37240994 0.00795365 0.00131897]]\n",
|
183 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
|
184 |
+
"[[0.6174236 0.37296996 0.0084237 0.00118283]]\n",
|
185 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
186 |
+
"[[0.53627264 0.4550183 0.00787264 0.00083647]]\n",
|
187 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step\n",
|
188 |
+
"[[6.3499963e-01 3.6145884e-01 3.0721761e-03 4.6933253e-04]]\n",
|
189 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step\n",
|
190 |
+
"[[0.59015673 0.3910087 0.01667546 0.00215918]]\n",
|
191 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step\n",
|
192 |
+
"[[0.547751 0.43992066 0.01099813 0.00133022]]\n",
|
193 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step\n",
|
194 |
+
"[[6.1030549e-01 3.8535413e-01 3.9123669e-03 4.2805608e-04]]\n",
|
195 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step\n",
|
196 |
+
"[[0.5895906 0.39260563 0.01642497 0.00137877]]\n",
|
197 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step\n",
|
198 |
+
"[[0.4235793 0.56652987 0.00914386 0.00074703]]\n",
|
199 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step\n",
|
200 |
+
"[[4.8226121e-01 5.0990009e-01 7.3582488e-03 4.8048754e-04]]\n",
|
201 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 139ms/step\n",
|
202 |
+
"[[0.47468084 0.49073824 0.03259087 0.00199007]]\n",
|
203 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step\n",
|
204 |
+
"[[0.48702973 0.5029544 0.00944369 0.00057216]]\n",
|
205 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step\n",
|
206 |
+
"[[0.46537527 0.5274027 0.0066941 0.00052791]]\n",
|
207 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step\n",
|
208 |
+
"[[0.425588 0.5606394 0.01319939 0.00057326]]\n",
|
209 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step\n",
|
210 |
+
"[[4.6433157e-01 5.3061748e-01 4.6703219e-03 3.8065348e-04]]\n",
|
211 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step\n",
|
212 |
+
"[[5.0271779e-01 4.9165285e-01 5.3839809e-03 2.4538283e-04]]\n",
|
213 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 95ms/step\n",
|
214 |
+
"[[4.9817729e-01 4.9809283e-01 3.4314308e-03 2.9849299e-04]]\n",
|
215 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 92ms/step\n",
|
216 |
+
"[[0.4323189 0.55639476 0.01058941 0.00069697]]\n",
|
217 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 112ms/step\n",
|
218 |
+
"[[4.9058634e-01 5.0517666e-01 3.8562843e-03 3.8071233e-04]]\n",
|
219 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step\n",
|
220 |
+
"[[4.6864349e-01 5.2765518e-01 3.3698247e-03 3.3153337e-04]]\n",
|
221 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
222 |
+
"[[4.7328150e-01 5.1489401e-01 1.1425589e-02 3.9892178e-04]]\n",
|
223 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step\n",
|
224 |
+
"[[5.6844020e-01 4.2386171e-01 7.2170394e-03 4.8100951e-04]]\n",
|
225 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step\n",
|
226 |
+
"[[4.7888020e-01 5.1815802e-01 2.7156596e-03 2.4622082e-04]]\n",
|
227 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step\n",
|
228 |
+
"[[4.4938755e-01 5.4168677e-01 8.4247021e-03 5.0095661e-04]]\n",
|
229 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step\n",
|
230 |
+
"[[4.8189956e-01 5.1445591e-01 3.2346470e-03 4.0994020e-04]]\n",
|
231 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step\n",
|
232 |
+
"[[4.3830103e-01 5.5796260e-01 3.5162044e-03 2.2019379e-04]]\n",
|
233 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m���━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step\n",
|
234 |
+
"[[3.8675940e-01 6.1051351e-01 2.5933362e-03 1.3384310e-04]]\n",
|
235 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step\n",
|
236 |
+
"[[4.7633487e-01 5.1811528e-01 5.2490053e-03 3.0079822e-04]]\n",
|
237 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step\n",
|
238 |
+
"[[0.5355513 0.4560149 0.00782073 0.00061306]]\n",
|
239 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step\n",
|
240 |
+
"[[4.9573547e-01 5.0054139e-01 3.4869814e-03 2.3615584e-04]]\n",
|
241 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 98ms/step\n",
|
242 |
+
"[[4.6156302e-01 5.3393996e-01 4.1647437e-03 3.3234234e-04]]\n",
|
243 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step\n",
|
244 |
+
"[[0.52708125 0.46093372 0.01130558 0.00067942]]\n",
|
245 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step\n",
|
246 |
+
"[[4.4243312e-01 5.5234385e-01 4.9254801e-03 2.9754813e-04]]\n",
|
247 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
248 |
+
"[[4.3317986e-01 5.6243598e-01 4.1413051e-03 2.4284663e-04]]\n",
|
249 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step\n",
|
250 |
+
"[[0.52935624 0.46102938 0.00886495 0.00074939]]\n",
|
251 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
252 |
+
"[[4.8261899e-01 5.1293612e-01 4.1731801e-03 2.7175286e-04]]\n",
|
253 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step\n",
|
254 |
+
"[[4.4055092e-01 5.5352402e-01 5.6604608e-03 2.6452570e-04]]\n",
|
255 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 110ms/step\n",
|
256 |
+
"[[4.2110297e-01 5.7347727e-01 5.1973891e-03 2.2236633e-04]]\n",
|
257 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 114ms/step\n",
|
258 |
+
"[[3.9519185e-01 5.9414124e-01 1.0202706e-02 4.6415642e-04]]\n",
|
259 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step\n",
|
260 |
+
"[[0.52715486 0.42906848 0.04193437 0.00184232]]\n",
|
261 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 121ms/step\n",
|
262 |
+
"[[0.4206979 0.55904144 0.01885335 0.00140733]]\n",
|
263 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 103ms/step\n",
|
264 |
+
"[[0.544774 0.14541742 0.25587305 0.05393547]]\n",
|
265 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step\n",
|
266 |
+
"[[0.4370813 0.49844724 0.06200609 0.00246527]]\n",
|
267 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step\n",
|
268 |
+
"[[0.4528224 0.52911925 0.01663947 0.00141889]]\n",
|
269 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 96ms/step\n",
|
270 |
+
"[[0.3819743 0.5466778 0.06750397 0.00384389]]\n",
|
271 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 113ms/step\n",
|
272 |
+
"[[0.40970472 0.5569316 0.03105194 0.00231172]]\n",
|
273 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 94ms/step\n",
|
274 |
+
"[[0.6114612 0.19729745 0.1383356 0.0529057 ]]\n",
|
275 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 135ms/step\n",
|
276 |
+
"[[0.45113012 0.50088024 0.04475248 0.00323708]]\n",
|
277 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━���━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step\n",
|
278 |
+
"[[0.45435527 0.53013545 0.01427606 0.00123324]]\n",
|
279 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step\n",
|
280 |
+
"[[0.47971782 0.5001755 0.01883741 0.00126928]]\n",
|
281 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 99ms/step\n",
|
282 |
+
"[[0.54685706 0.43772423 0.01460937 0.00080937]]\n",
|
283 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 119ms/step\n",
|
284 |
+
"[[0.43435532 0.51326823 0.04905771 0.00331874]]\n",
|
285 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step\n",
|
286 |
+
"[[0.4691491 0.51138616 0.01782178 0.00164296]]\n",
|
287 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 132ms/step\n",
|
288 |
+
"[[0.36563382 0.609435 0.02245951 0.00247164]]\n",
|
289 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 93ms/step\n",
|
290 |
+
"[[0.4674584 0.51042354 0.0199133 0.00220476]]\n",
|
291 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 134ms/step\n",
|
292 |
+
"[[0.35535875 0.62192243 0.02078114 0.0019377 ]]\n",
|
293 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step\n",
|
294 |
+
"[[0.35675234 0.5971697 0.04377323 0.00230471]]\n",
|
295 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step\n",
|
296 |
+
"[[0.32445276 0.6365426 0.03643773 0.00256694]]\n",
|
297 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 118ms/step\n",
|
298 |
+
"[[0.44510007 0.5342694 0.01953486 0.00109567]]\n",
|
299 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step\n",
|
300 |
+
"[[0.30969 0.60378057 0.07928306 0.00724639]]\n",
|
301 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 107ms/step\n",
|
302 |
+
"[[0.56752884 0.35713732 0.07257319 0.00276066]]\n",
|
303 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 120ms/step\n",
|
304 |
+
"[[0.34694657 0.5160776 0.13258497 0.00439083]]\n",
|
305 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 111ms/step\n",
|
306 |
+
"[[0.4539524 0.46011406 0.08372305 0.00221045]]\n",
|
307 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 105ms/step\n",
|
308 |
+
"[[5.1272041e-01 4.3961889e-01 4.7271658e-02 3.8900448e-04]]\n",
|
309 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step\n",
|
310 |
+
"[[0.67923796 0.2438758 0.07580444 0.00108182]]\n",
|
311 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 108ms/step\n",
|
312 |
+
"[[0.5821022 0.27528477 0.13952196 0.00309112]]\n",
|
313 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 115ms/step\n",
|
314 |
+
"[[0.4618073 0.35787314 0.16838866 0.01193077]]\n",
|
315 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step\n",
|
316 |
+
"[[0.5675023 0.3495956 0.07748043 0.0054217 ]]\n",
|
317 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 126ms/step\n",
|
318 |
+
"[[0.45714724 0.42329356 0.11500251 0.00455673]]\n",
|
319 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
320 |
+
"[[0.5857304 0.38192827 0.0309583 0.00138313]]\n",
|
321 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 116ms/step\n",
|
322 |
+
"[[0.5372635 0.43943352 0.02258803 0.00071496]]\n",
|
323 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 106ms/step\n",
|
324 |
+
"[[0.5059755 0.46730185 0.02545177 0.00127086]]\n",
|
325 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 97ms/step\n",
|
326 |
+
"[[0.5287636 0.436619 0.03319615 0.00142124]]\n",
|
327 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 122ms/step\n",
|
328 |
+
"[[0.5353085 0.3997285 0.0617837 0.0031793]]\n",
|
329 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 100ms/step\n",
|
330 |
+
"[[0.50711626 0.45882738 0.03308126 0.00097504]]\n",
|
331 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 125ms/step\n",
|
332 |
+
"[[0.47909027 0.4863685 0.03269366 0.00184744]]\n",
|
333 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 104ms/step\n",
|
334 |
+
"[[0.40050444 0.5718929 0.02541785 0.00218476]]\n",
|
335 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 101ms/step\n",
|
336 |
+
"[[0.3778685 0.5632252 0.05708069 0.00182558]]\n",
|
337 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 150ms/step\n",
|
338 |
+
"[[0.57108206 0.40179658 0.02321302 0.00390833]]\n",
|
339 |
+
"\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step\n",
|
340 |
+
"[[0.53513265 0.41831055 0.0419606 0.00459616]]\n"
|
341 |
+
]
|
342 |
+
}
|
343 |
+
],
|
344 |
+
"source": [
|
345 |
+
"import cv2 as cv\n",
|
346 |
+
"import numpy as np\n",
|
347 |
+
"import matplotlib.pyplot as plt\n",
|
348 |
+
"\n",
|
349 |
+
"classes = ['no_yawn', 'yawn', 'Closed', 'Open'] # Class labels\n",
|
350 |
+
"IMG_SIZE = 145 # Image size for resizing\n",
|
351 |
+
"face_cascade = cv.CascadeClassifier(\"C:/Users/rohit/Downloads/haarcascade_frontalface_default.xml\")\n",
|
352 |
+
"\n",
|
353 |
+
"# Prepare the frame for prediction\n",
|
354 |
+
"def prepare_frame(frame):\n",
|
355 |
+
" gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) # Convert to grayscale for better detection\n",
|
356 |
+
" faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5)\n",
|
357 |
+
" face_list = []\n",
|
358 |
+
" coords = []\n",
|
359 |
+
" \n",
|
360 |
+
" if len(faces) > 0:\n",
|
361 |
+
" # Select the face with the maximum area\n",
|
362 |
+
" f = max(faces, key=lambda x: x[2] * x[3])\n",
|
363 |
+
" x, y, w, h = f\n",
|
364 |
+
" face = frame[y:y+h, x:x+w] # Crop the detected face\n",
|
365 |
+
" resized_face = cv.resize(face, (IMG_SIZE, IMG_SIZE)) # Resize to match model input\n",
|
366 |
+
" resized_face = resized_face / 255.0 # Normalize\n",
|
367 |
+
" face_list.append(resized_face.reshape(-1, IMG_SIZE, IMG_SIZE, 3))\n",
|
368 |
+
" coords.append((x, y, w, h))\n",
|
369 |
+
" \n",
|
370 |
+
" return face_list, coords\n",
|
371 |
+
"\n",
|
372 |
+
"# Start video capture\n",
|
373 |
+
"cap = cv.VideoCapture(0)\n",
|
374 |
+
"\n",
|
375 |
+
"while True:\n",
|
376 |
+
" ret, frame = cap.read()\n",
|
377 |
+
" if not ret:\n",
|
378 |
+
" break\n",
|
379 |
+
"\n",
|
380 |
+
" frame = cv.flip(frame, 1) # Flip frame horizontally\n",
|
381 |
+
" processed_frames, coords = prepare_frame(frame)\n",
|
382 |
+
" \n",
|
383 |
+
" if processed_frames:\n",
|
384 |
+
" for i, processed_frame in enumerate(processed_frames):\n",
|
385 |
+
" prediction = model.predict(processed_frame) \n",
|
386 |
+
" print(prediction)\n",
|
387 |
+
" predicted_class = np.argmax(prediction) \n",
|
388 |
+
" class_label = classes[predicted_class]\n",
|
389 |
+
" x, y, w, h = coords[i]\n",
|
390 |
+
"\n",
|
391 |
+
" # Draw rectangle around the face\n",
|
392 |
+
" cv.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)\n",
|
393 |
+
" \n",
|
394 |
+
" # Display predicted label on frame\n",
|
395 |
+
" cv.putText(frame, f'{class_label}', (x, y-10), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)\n",
|
396 |
+
"\n",
|
397 |
+
" # Smoothen video quality by applying a Gaussian blur\n",
|
398 |
+
" frame = cv.GaussianBlur(frame, (5, 5), 0)\n",
|
399 |
+
"\n",
|
400 |
+
" cv.imshow('Real-time Emotion Detection', frame)\n",
|
401 |
+
"\n",
|
402 |
+
" # Press 'q' to quit\n",
|
403 |
+
" if cv.waitKey(1) & 0xFF == ord('q'):\n",
|
404 |
+
" break\n",
|
405 |
+
"\n",
|
406 |
+
"cap.release()\n",
|
407 |
+
"cv.destroyAllWindows()\n"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"cell_type": "code",
|
412 |
+
"execution_count": 23,
|
413 |
+
"metadata": {},
|
414 |
+
"outputs": [],
|
415 |
+
"source": [
|
416 |
+
"cap.release()\n",
|
417 |
+
"cv.destroyAllWindows()"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "markdown",
|
422 |
+
"metadata": {},
|
423 |
+
"source": [
|
424 |
+
"### For Eye open or close"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"cell_type": "code",
|
429 |
+
"execution_count": 22,
|
430 |
+
"metadata": {},
|
431 |
+
"outputs": [
|
432 |
+
{
|
433 |
+
"name": "stdout",
|
434 |
+
"output_type": "stream",
|
435 |
+
"text": [
|
436 |
+
"pygame 2.6.1 (SDL 2.28.4, Python 3.11.4)\n",
|
437 |
+
"Hello from the pygame community. https://www.pygame.org/contribute.html\n"
|
438 |
+
]
|
439 |
+
}
|
440 |
+
],
|
441 |
+
"source": [
|
442 |
+
"import cv2 as cv\n",
|
443 |
+
"import numpy as np\n",
|
444 |
+
"import time\n",
|
445 |
+
"import pygame\n",
|
446 |
+
"\n",
|
447 |
+
"classes = ['Closed', 'Open'] # Class labels for eyes only\n",
|
448 |
+
"\n",
|
449 |
+
"# Load face and eye cascade classifiers\n",
|
450 |
+
"face_cascade = cv.CascadeClassifier(\"C:/Users/rohit/Downloads/haarcascade_frontalface_default.xml\")\n",
|
451 |
+
"eye_cascade = cv.CascadeClassifier(\"C:/Users/rohit/Downloads/haarcascade_eye.xml\")\n",
|
452 |
+
"\n",
|
453 |
+
"# Initialize alarm\n",
|
454 |
+
"pygame.mixer.init()\n",
|
455 |
+
"pygame.mixer.music.load(\"research/alarm.wav\")\n",
|
456 |
+
"\n",
|
457 |
+
"# Track eye closure duration\n",
|
458 |
+
"closed_start_time = None\n",
|
459 |
+
"alarm_triggered = False\n",
|
460 |
+
"\n",
|
461 |
+
"# Prepare the frame for eye detection\n",
|
462 |
+
"def prepare_frame(frame):\n",
|
463 |
+
" global closed_start_time, alarm_triggered\n",
|
464 |
+
" gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) # Convert to grayscale for better detection\n",
|
465 |
+
" faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5)\n",
|
466 |
+
" eye_status = 'Closed'\n",
|
467 |
+
" \n",
|
468 |
+
" for (x, y, w, h) in faces:\n",
|
469 |
+
" face_roi = frame[y:y+h, x:x+w]\n",
|
470 |
+
" roi_gray = gray_frame[y:y+h, x:x+w]\n",
|
471 |
+
" eyes = eye_cascade.detectMultiScale(roi_gray, scaleFactor=1.1, minNeighbors=5)\n",
|
472 |
+
" \n",
|
473 |
+
" # If two or more eyes detected, classify as 'Open'\n",
|
474 |
+
" if len(eyes) >= 2:\n",
|
475 |
+
" eye_status = 'Open'\n",
|
476 |
+
" if alarm_triggered:\n",
|
477 |
+
" pygame.mixer.music.stop()\n",
|
478 |
+
" alarm_triggered = False\n",
|
479 |
+
" closed_start_time = None\n",
|
480 |
+
" else:\n",
|
481 |
+
" if closed_start_time is None:\n",
|
482 |
+
" closed_start_time = time.time()\n",
|
483 |
+
" elif time.time() - closed_start_time >= 3:\n",
|
484 |
+
" if not alarm_triggered:\n",
|
485 |
+
" pygame.mixer.music.play()\n",
|
486 |
+
" alarm_triggered = True\n",
|
487 |
+
" \n",
|
488 |
+
" # Draw a rectangle around the entire face\n",
|
489 |
+
" cv.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)\n",
|
490 |
+
" break # Stop after detecting the first face to avoid multiple rectangles\n",
|
491 |
+
"\n",
|
492 |
+
" cv.putText(frame, eye_status, (20, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)\n",
|
493 |
+
" return eye_status\n",
|
494 |
+
"\n",
|
495 |
+
"# Start video capture\n",
|
496 |
+
"cap = cv.VideoCapture(0)\n",
|
497 |
+
"\n",
|
498 |
+
"while True:\n",
|
499 |
+
" ret, frame = cap.read()\n",
|
500 |
+
" if not ret:\n",
|
501 |
+
" break\n",
|
502 |
+
"\n",
|
503 |
+
" frame = cv.flip(frame, 1) # Flip frame horizontally\n",
|
504 |
+
" eye_status = prepare_frame(frame)\n",
|
505 |
+
"\n",
|
506 |
+
" # Display the frame with eye detection\n",
|
507 |
+
" cv.imshow('Real-time Eye Detection', frame)\n",
|
508 |
+
"\n",
|
509 |
+
" # Press 'q' to quit\n",
|
510 |
+
" if cv.waitKey(1) & 0xFF == ord('q'):\n",
|
511 |
+
" break\n",
|
512 |
+
"\n",
|
513 |
+
"cap.release()\n",
|
514 |
+
"cv.destroyAllWindows()\n"
|
515 |
+
]
|
516 |
+
}
|
517 |
+
],
|
518 |
+
"metadata": {
|
519 |
+
"kernelspec": {
|
520 |
+
"display_name": "chatbot",
|
521 |
+
"language": "python",
|
522 |
+
"name": "python3"
|
523 |
+
},
|
524 |
+
"language_info": {
|
525 |
+
"codemirror_mode": {
|
526 |
+
"name": "ipython",
|
527 |
+
"version": 3
|
528 |
+
},
|
529 |
+
"file_extension": ".py",
|
530 |
+
"mimetype": "text/x-python",
|
531 |
+
"name": "python",
|
532 |
+
"nbconvert_exporter": "python",
|
533 |
+
"pygments_lexer": "ipython3",
|
534 |
+
"version": "3.11.4"
|
535 |
+
}
|
536 |
+
},
|
537 |
+
"nbformat": 4,
|
538 |
+
"nbformat_minor": 2
|
539 |
+
}
|
research/train.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|