Spaces:
Runtime error
Runtime error
| import tempfile | |
| from argparse import Namespace | |
| from pathlib import Path | |
| import gradio as gr | |
| import soundfile as sf | |
| import torch | |
| from matcha.cli import ( | |
| MATCHA_URLS, | |
| VOCODER_URLS, | |
| assert_model_downloaded, | |
| get_device, | |
| load_matcha, | |
| load_vocoder, | |
| process_text, | |
| to_waveform, | |
| ) | |
| from matcha.utils.utils import get_user_data_dir, plot_tensor | |
| LOCATION = Path(get_user_data_dir()) | |
| args = Namespace( | |
| cpu=False, | |
| model="matcha_vctk", | |
| vocoder="hifigan_univ_v1", | |
| spk=0, | |
| ) | |
| CURRENTLY_LOADED_MODEL = args.model | |
| def MATCHA_TTS_LOC(x): | |
| return LOCATION / f"{x}.ckpt" | |
| def VOCODER_LOC(x): | |
| return LOCATION / f"{x}" | |
| LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png" | |
| RADIO_OPTIONS = { | |
| "Multi Speaker (VCTK)": { | |
| "model": "matcha_vctk", | |
| "vocoder": "hifigan_univ_v1", | |
| }, | |
| "Single Speaker (LJ Speech)": { | |
| "model": "matcha_ljspeech", | |
| "vocoder": "hifigan_T2_v1", | |
| }, | |
| } | |
| # Ensure all the required models are downloaded | |
| assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"]) | |
| assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"]) | |
| assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"]) | |
| assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"]) | |
| device = get_device(args) | |
| # Load default model | |
| model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device) | |
| vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device) | |
| def load_model(model_name, vocoder_name): | |
| model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device) | |
| vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device) | |
| return model, vocoder, denoiser | |
| def load_model_ui(model_type, textbox): | |
| model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"] | |
| global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement | |
| if CURRENTLY_LOADED_MODEL != model_name: | |
| model, vocoder, denoiser = load_model(model_name, vocoder_name) | |
| CURRENTLY_LOADED_MODEL = model_name | |
| if model_name == "matcha_ljspeech": | |
| spk_slider = gr.update(visible=False, value=-1) | |
| single_speaker_examples = gr.update(visible=True) | |
| multi_speaker_examples = gr.update(visible=False) | |
| length_scale = gr.update(value=0.95) | |
| else: | |
| spk_slider = gr.update(visible=True, value=0) | |
| single_speaker_examples = gr.update(visible=False) | |
| multi_speaker_examples = gr.update(visible=True) | |
| length_scale = gr.update(value=0.85) | |
| return ( | |
| textbox, | |
| gr.update(interactive=True), | |
| spk_slider, | |
| single_speaker_examples, | |
| multi_speaker_examples, | |
| length_scale, | |
| ) | |
| def process_text_gradio(text): | |
| output = process_text(1, text, device) | |
| return output["x_phones"][1::2], output["x"], output["x_lengths"] | |
| def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk): | |
| spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None | |
| output = model.synthesise( | |
| text, | |
| text_length, | |
| n_timesteps=n_timesteps, | |
| temperature=temperature, | |
| spks=spk, | |
| length_scale=length_scale, | |
| ) | |
| output["waveform"] = to_waveform(output["mel"], vocoder, denoiser) | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
| sf.write(fp.name, output["waveform"], 22050, "PCM_24") | |
| return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy()) | |
| def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk): | |
| global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement | |
| if CURRENTLY_LOADED_MODEL != "matcha_vctk": | |
| global model, vocoder, denoiser # pylint: disable=global-statement | |
| model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1") | |
| CURRENTLY_LOADED_MODEL = "matcha_vctk" | |
| phones, text, text_lengths = process_text_gradio(text) | |
| audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk) | |
| return phones, audio, mel_spectrogram | |
| def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1): | |
| global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement | |
| if CURRENTLY_LOADED_MODEL != "matcha_ljspeech": | |
| global model, vocoder, denoiser # pylint: disable=global-statement | |
| model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1") | |
| CURRENTLY_LOADED_MODEL = "matcha_ljspeech" | |
| phones, text, text_lengths = process_text_gradio(text) | |
| audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk) | |
| return phones, audio, mel_spectrogram | |
| def main(): | |
| description = """# 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching | |
| ### [Shivam Mehta](https://www.kth.se/profile/smehta), [Ruibo Tu](https://www.kth.se/profile/ruibo), [Jonas Beskow](https://www.kth.se/profile/beskow), [Éva Székely](https://www.kth.se/profile/szekely), and [Gustav Eje Henter](https://people.kth.se/~ghe/) | |
| We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method: | |
| * Is probabilistic | |
| * Has compact memory footprint | |
| * Sounds highly natural | |
| * Is very fast to synthesise from | |
| Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199). | |
| Code is available in our [GitHub repository](https://github.com/shivammehta25/Matcha-TTS), along with pre-trained models. | |
| Cached examples are available at the bottom of the page. | |
| """ | |
| with gr.Blocks(title="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching") as demo: | |
| processed_text = gr.State(value=None) | |
| processed_text_len = gr.State(value=None) | |
| with gr.Box(): | |
| with gr.Row(): | |
| gr.Markdown(description, scale=3) | |
| with gr.Column(): | |
| gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False) | |
| html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>' | |
| gr.HTML(html) | |
| with gr.Box(): | |
| radio_options = list(RADIO_OPTIONS.keys()) | |
| model_type = gr.Radio( | |
| radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# Text Input") | |
| with gr.Row(): | |
| text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3) | |
| spk_slider = gr.Slider( | |
| minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1 | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("### Hyper parameters") | |
| with gr.Row(): | |
| n_timesteps = gr.Slider( | |
| label="Number of ODE steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=10, | |
| interactive=True, | |
| ) | |
| length_scale = gr.Slider( | |
| label="Length scale (Speaking rate)", | |
| minimum=0.5, | |
| maximum=1.5, | |
| step=0.05, | |
| value=1.0, | |
| interactive=True, | |
| ) | |
| mel_temp = gr.Slider( | |
| label="Sampling temperature", | |
| minimum=0.00, | |
| maximum=2.001, | |
| step=0.16675, | |
| value=0.667, | |
| interactive=True, | |
| ) | |
| synth_btn = gr.Button("Synthesise") | |
| with gr.Box(): | |
| with gr.Row(): | |
| gr.Markdown("### Phonetised text") | |
| phonetised_text = gr.Textbox(interactive=False, scale=10, label="Phonetised text") | |
| with gr.Box(): | |
| with gr.Row(): | |
| mel_spectrogram = gr.Image(interactive=False, label="mel spectrogram") | |
| # with gr.Row(): | |
| audio = gr.Audio(interactive=False, label="Audio") | |
| with gr.Row(visible=False) as example_row_lj_speech: | |
| examples = gr.Examples( # pylint: disable=unused-variable | |
| examples=[ | |
| [ | |
| "We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.", | |
| 50, | |
| 0.677, | |
| 0.95, | |
| ], | |
| [ | |
| "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
| 2, | |
| 0.677, | |
| 0.95, | |
| ], | |
| [ | |
| "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
| 4, | |
| 0.677, | |
| 0.95, | |
| ], | |
| [ | |
| "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
| 10, | |
| 0.677, | |
| 0.95, | |
| ], | |
| [ | |
| "The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.", | |
| 50, | |
| 0.677, | |
| 0.95, | |
| ], | |
| [ | |
| "The narrative of these events is based largely on the recollections of the participants.", | |
| 10, | |
| 0.677, | |
| 0.95, | |
| ], | |
| [ | |
| "The jury did not believe him, and the verdict was for the defendants.", | |
| 10, | |
| 0.677, | |
| 0.95, | |
| ], | |
| ], | |
| fn=ljspeech_example_cacher, | |
| inputs=[text, n_timesteps, mel_temp, length_scale], | |
| outputs=[phonetised_text, audio, mel_spectrogram], | |
| cache_examples=True, | |
| ) | |
| with gr.Row() as example_row_multispeaker: | |
| multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable | |
| examples=[ | |
| [ | |
| "Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!", | |
| 10, | |
| 0.677, | |
| 0.85, | |
| 0, | |
| ], | |
| [ | |
| "Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!", | |
| 10, | |
| 0.677, | |
| 0.85, | |
| 16, | |
| ], | |
| [ | |
| "Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!", | |
| 50, | |
| 0.677, | |
| 0.85, | |
| 44, | |
| ], | |
| [ | |
| "Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!", | |
| 50, | |
| 0.677, | |
| 0.85, | |
| 45, | |
| ], | |
| [ | |
| "Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!", | |
| 4, | |
| 0.677, | |
| 0.85, | |
| 58, | |
| ], | |
| ], | |
| fn=multispeaker_example_cacher, | |
| inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider], | |
| outputs=[phonetised_text, audio, mel_spectrogram], | |
| cache_examples=True, | |
| label="Multi Speaker Examples", | |
| ) | |
| model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then( | |
| load_model_ui, | |
| inputs=[model_type, text], | |
| outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale], | |
| ) | |
| synth_btn.click( | |
| fn=process_text_gradio, | |
| inputs=[ | |
| text, | |
| ], | |
| outputs=[phonetised_text, processed_text, processed_text_len], | |
| api_name="matcha_tts", | |
| queue=True, | |
| ).then( | |
| fn=synthesise_mel, | |
| inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider], | |
| outputs=[audio, mel_spectrogram], | |
| ) | |
| demo.queue().launch(share=True) | |
| if __name__ == "__main__": | |
| main() | |