Spaces:
Runtime error
Runtime error
Spinners and Columns
Browse files
app.py
CHANGED
|
@@ -7,26 +7,36 @@ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-larg
|
|
| 7 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 8 |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
with st.sidebar:
|
| 13 |
image_gen_guidance = st.slider("Stable Diffusion: Guidance Scale", value=7.5)
|
| 14 |
image_gen_steps = st.slider("stable Diffusion: Inference Steps", value=50)
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
description = ' '.join(descs)
|
| 30 |
-
images = pipe(description, guidance_scale=image_gen_guidance, num_inference_steps=image_gen_steps).images
|
| 31 |
-
for image in images:
|
| 32 |
st.image(image, caption=description)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 8 |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
| 9 |
|
| 10 |
+
captions = []
|
| 11 |
|
| 12 |
with st.sidebar:
|
| 13 |
image_gen_guidance = st.slider("Stable Diffusion: Guidance Scale", value=7.5)
|
| 14 |
image_gen_steps = st.slider("stable Diffusion: Inference Steps", value=50)
|
| 15 |
|
| 16 |
+
col1, col2 = st.columns(2)
|
| 17 |
|
| 18 |
+
with col1:
|
| 19 |
+
files = st.file_uploader("Upload images to blend", accept_multiple_files=True)
|
| 20 |
|
| 21 |
+
for file_name in files:
|
| 22 |
+
image = Image.open(file_name)
|
| 23 |
|
| 24 |
+
with st.spinner('Captioning Provided Image'):
|
| 25 |
+
inputs = processor(image, return_tensors="pt")
|
| 26 |
+
out = model.generate(**inputs)
|
| 27 |
+
description = processor.decode(out[0], skip_special_tokens=True)
|
| 28 |
+
captions.append(description)
|
| 29 |
|
| 30 |
+
st.success("Image Captioned")
|
|
|
|
|
|
|
|
|
|
| 31 |
st.image(image, caption=description)
|
| 32 |
+
|
| 33 |
+
with col2:
|
| 34 |
+
if len(captions) > 0:
|
| 35 |
+
description = ' '.join(captions)
|
| 36 |
+
|
| 37 |
+
with st.spinner('Generating Photo from Caption'):
|
| 38 |
+
images = pipe(description, guidance_scale=image_gen_guidance, num_inference_steps=image_gen_steps).images
|
| 39 |
+
|
| 40 |
+
st.success("Image Generated")
|
| 41 |
+
for image in images:
|
| 42 |
+
st.image(image, caption=description)
|