Spaces:
Runtime error
Runtime error
Add guidance_scale as parameter to gradio app
Browse files
app.py
CHANGED
@@ -12,13 +12,14 @@ dreambooth_model = keras_cv.models.StableDiffusion(
|
|
12 |
loaded_diffusion_model = from_pretrained_keras("melanit/dreambooth_voyager_v2")
|
13 |
dreambooth_model._diffusion_model = loaded_diffusion_model
|
14 |
|
15 |
-
def generate_images(prompt: str, negative_prompt:str, batch_size: int, num_steps: int):
|
16 |
"""
|
17 |
This function will infer the trained dreambooth (stable diffusion) model
|
18 |
Args:
|
19 |
prompt (str): The input text
|
20 |
batch_size (int): The number of images to be generated
|
21 |
num_steps (int): The number of denoising steps
|
|
|
22 |
Returns:
|
23 |
outputs (List): List of images that were generated using the model
|
24 |
"""
|
@@ -27,6 +28,7 @@ def generate_images(prompt: str, negative_prompt:str, batch_size: int, num_steps
|
|
27 |
negative_prompt=negative_prompt,
|
28 |
batch_size=batch_size,
|
29 |
num_steps=num_steps,
|
|
|
30 |
)
|
31 |
|
32 |
return outputs
|
@@ -39,14 +41,15 @@ with gr.Blocks() as demo:
|
|
39 |
negative_prompt = gr.Textbox(lines=1, value="", label="Negative Prompt")
|
40 |
samples = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Images")
|
41 |
num_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Denoising Steps")
|
|
|
42 |
run = gr.Button(value="Run")
|
43 |
with gr.Column():
|
44 |
gallery = gr.Gallery(label="Outputs").style(grid=(1,2))
|
45 |
|
46 |
-
run.click(generate_images, inputs=[prompt,negative_prompt, samples, num_steps], outputs=gallery)
|
47 |
|
48 |
-
gr.Examples([["photo of voyager spaceship in space, high quality, blender, 3d, trending on artstation, 8k","bad, ugly, malformed, deformed, out of frame, blurry", 1, 50]],
|
49 |
-
[prompt,negative_prompt, samples,num_steps], gallery, generate_images)
|
50 |
gr.Markdown('Demo created by [Lily Berkow](https://huggingface.co/melanit/)')
|
51 |
|
52 |
demo.launch()
|
|
|
12 |
loaded_diffusion_model = from_pretrained_keras("melanit/dreambooth_voyager_v2")
|
13 |
dreambooth_model._diffusion_model = loaded_diffusion_model
|
14 |
|
15 |
+
def generate_images(prompt: str, negative_prompt:str, batch_size: int, num_steps: int, guidance_scale: float):
|
16 |
"""
|
17 |
This function will infer the trained dreambooth (stable diffusion) model
|
18 |
Args:
|
19 |
prompt (str): The input text
|
20 |
batch_size (int): The number of images to be generated
|
21 |
num_steps (int): The number of denoising steps
|
22 |
+
guidance_scale (float): The Guidance Scale
|
23 |
Returns:
|
24 |
outputs (List): List of images that were generated using the model
|
25 |
"""
|
|
|
28 |
negative_prompt=negative_prompt,
|
29 |
batch_size=batch_size,
|
30 |
num_steps=num_steps,
|
31 |
+
unconditional_guidance_scale=guidance_scale
|
32 |
)
|
33 |
|
34 |
return outputs
|
|
|
41 |
negative_prompt = gr.Textbox(lines=1, value="", label="Negative Prompt")
|
42 |
samples = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Number of Images")
|
43 |
num_steps = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Denoising Steps")
|
44 |
+
guidance_scale = gr.Slider(value=7.5, step=0.5, label="Guidance scale")
|
45 |
run = gr.Button(value="Run")
|
46 |
with gr.Column():
|
47 |
gallery = gr.Gallery(label="Outputs").style(grid=(1,2))
|
48 |
|
49 |
+
run.click(generate_images, inputs=[prompt, negative_prompt, samples, num_steps, guidance_scale], outputs=gallery)
|
50 |
|
51 |
+
gr.Examples([["photo of voyager spaceship in space, high quality, blender, 3d, trending on artstation, 8k","bad, ugly, malformed, deformed, out of frame, blurry", 1, 50, 7.5]],
|
52 |
+
[prompt, negative_prompt, samples, num_steps, guidance_scale], gallery, generate_images)
|
53 |
gr.Markdown('Demo created by [Lily Berkow](https://huggingface.co/melanit/)')
|
54 |
|
55 |
demo.launch()
|