Spaces:
Sleeping
Sleeping
import pandas as pd | |
import joblib | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.model_selection import train_test_split | |
# Load data | |
df = pd.read_csv("data/transactions.csv") | |
# Feature engineering | |
df["hour"] = pd.to_datetime(df["time"], format="%H:%M").dt.hour | |
df.drop(columns=["check_id", "time"], inplace=True) | |
# Encode categorical variables | |
categorical_cols = ["employee_id", "terminal_id"] | |
encoders = {} | |
for col in categorical_cols: | |
enc = LabelEncoder() | |
df[col] = enc.fit_transform(df[col]) | |
encoders[col] = enc | |
# Features and target | |
X = df.drop(columns=["suspicious"]) | |
y = df["suspicious"] | |
# Train/test split | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Train model | |
model = RandomForestClassifier(n_estimators=100, random_state=42) | |
model.fit(X_train, y_train) | |
# Save model and encoders | |
joblib.dump(model, "model/model.pkl") | |
joblib.dump(encoders, "model/encoders.pkl") | |
print("Training complete. Model saved.") | |