Spaces:
Sleeping
Sleeping
Create predict.py
Browse files- predict.py +37 -0
predict.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import joblib
|
3 |
+
|
4 |
+
# Load model and encoders
|
5 |
+
model = joblib.load("model/model.pkl")
|
6 |
+
encoders = joblib.load("model/encoders.pkl")
|
7 |
+
|
8 |
+
def predict_transaction(data_dict):
|
9 |
+
# Convert dict to dataframe
|
10 |
+
df = pd.DataFrame([data_dict])
|
11 |
+
|
12 |
+
# Process time
|
13 |
+
df["hour"] = pd.to_datetime(df["time"], format="%H:%M").dt.hour
|
14 |
+
df.drop(columns=["check_id", "time"], inplace=True)
|
15 |
+
|
16 |
+
# Encode categorical features
|
17 |
+
for col in ["employee_id", "terminal_id"]:
|
18 |
+
df[col] = encoders[col].transform(df[col])
|
19 |
+
|
20 |
+
# Predict
|
21 |
+
prediction = model.predict(df)[0]
|
22 |
+
return "Suspicious" if prediction == 1 else "Not Suspicious"
|
23 |
+
|
24 |
+
# Example usage
|
25 |
+
if __name__ == "__main__":
|
26 |
+
sample = {
|
27 |
+
"check_id": 1005,
|
28 |
+
"employee_id": "E101",
|
29 |
+
"total": 100,
|
30 |
+
"discount_amount": 90,
|
31 |
+
"item_count": 1,
|
32 |
+
"time": "12:10",
|
33 |
+
"terminal_id": "T1"
|
34 |
+
}
|
35 |
+
|
36 |
+
result = predict_transaction(sample)
|
37 |
+
print("Prediction:", result)
|