import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import json # Load lightweight model model_name = "google/flan-t5-small" # You can change this to another small instruct model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) generator = pipeline("text2text-generation", model=model, tokenizer=tokenizer) def generate_json(prompt): instruction = f"Generate a JSON object from the following description:\n{prompt}" result = generator(instruction, max_length=256, do_sample=False) generated_text = result[0]["generated_text"] try: parsed = eval(generated_text) # Not recommended in production; use json.loads if output is valid JSON formatted_json = json.dumps(parsed, indent=2) except Exception as e: formatted_json = f"Raw Output:\n{generated_text}\n\nError parsing JSON: {e}" return formatted_json gr.Interface( fn=generate_json, inputs=gr.Textbox(lines=4, label="Enter Prompt"), outputs=gr.Textbox(lines=20, label="Generated JSON"), title="Lightweight JSON Generator", description="Enter a prompt describing the structure or content you want in JSON format." ).launch()