from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import gradio as gr import torch model_id = "tiiuae/falcon-rw-1b" # small enough to run in Hugging Face Space tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) def chat(user_input, history): prompt = "" for user, bot in history: prompt += f"User: {user}\nBot: {bot}\n" prompt += f"User: {user_input}\nBot:" response = pipe(prompt, max_new_tokens=128, do_sample=True, temperature=0.7)[0]["generated_text"] reply = response.split("Bot:")[-1].strip() history.append((user_input, reply)) return history, history gr.ChatInterface(chat, chatbot=gr.Chatbot(), title="Lightweight Chatbot").launch()