Spaces:
Running
Running
import torch | |
from diffusers import StableDiffusionPipeline | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load Stable Diffusion v1.4 from Hugging Face | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32, | |
use_safetensors=True | |
) | |
pipe = pipe.to(device) | |
# Inference function | |
def generate(prompt, guidance, steps, width, height): | |
image = pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, height=height, width=width).images[0] | |
return image | |
# Gradio UI | |
title = "🎨 Offline Text-to-Image Generator (Stable Diffusion v1.4)" | |
description = "Generate images from text prompts using a fully self-hosted Stable Diffusion model." | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="pink")) as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Enter your prompt", placeholder="A steampunk dragon flying over a futuristic city") | |
guidance = gr.Slider(1, 20, value=7.5, step=0.5, label="Guidance Scale") | |
steps = gr.Slider(10, 100, value=30, step=5, label="Inference Steps") | |
width = gr.Slider(256, 768, value=512, step=64, label="Image Width") | |
height = gr.Slider(256, 768, value=512, step=64, label="Image Height") | |
submit = gr.Button("Generate Image") | |
with gr.Column(): | |
output = gr.Image(label="Generated Image") | |
submit.click(fn=generate, inputs=[prompt, guidance, steps, width, height], outputs=output) | |
demo.launch() | |