visionary-ai / app.py
kevalfst's picture
Update app.py
556d852 verified
raw
history blame
1.68 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
# Set model and tokenizer
model_name = "Qwen/Qwen2.5-Omni-3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
# Function to process inputs and generate response
def process_input(text_input, image_input=None, audio_input=None):
inputs = {"text": text_input}
if image_input:
inputs["image"] = image_input
if audio_input:
inputs["audio"] = audio_input
# Tokenize inputs (simplified for demo)
input_ids = tokenizer.encode(inputs["text"], return_tensors="pt").to(model.device)
# Generate response
outputs = model.generate(input_ids, max_length=200)
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Placeholder for speech generation (requires additional setup)
response_audio = None # Implement speech generation if needed
return response_text, response_audio
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Qwen2.5-Omni-3B Demo")
with gr.Row():
text_input = gr.Textbox(label="Text Input")
image_input = gr.Image(label="Upload Image")
audio_input = gr.Audio(label="Upload Audio")
submit_button = gr.Button("Submit")
text_output = gr.Textbox(label="Text Response")
audio_output = gr.Audio(label="Audio Response")
submit_button.click(
fn=process_input,
inputs=[text_input, image_input, audio_input],
outputs=[text_output, audio_output]
)
# Launch the app
demo.launch()