visionary-ai / app-old.py
kevalfst's picture
Rename app.py to app-old.py
e142ef9 verified
import torch
import gradio as gr
from diffusers import (
StableDiffusionPipeline,
StableDiffusionInstructPix2PixPipeline,
StableVideoDiffusionPipeline,
WanPipeline,
)
from diffusers.utils import export_to_video, load_image
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
def make_pipe(cls, model_id, **kwargs):
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
pipe.enable_model_cpu_offload()
return pipe
TXT2IMG_PIPE = None
IMG2IMG_PIPE = None
TXT2VID_PIPE = None
IMG2VID_PIPE = None
def generate_image_from_text(prompt):
global TXT2IMG_PIPE
if TXT2IMG_PIPE is None:
TXT2IMG_PIPE = make_pipe(
StableDiffusionPipeline,
"stabilityai/stable-diffusion-2-1-base"
).to(device)
return TXT2IMG_PIPE(prompt, num_inference_steps=20).images[0]
def generate_image_from_image_and_prompt(image, prompt):
global IMG2IMG_PIPE
if IMG2IMG_PIPE is None:
IMG2IMG_PIPE = make_pipe(
StableDiffusionInstructPix2PixPipeline,
"timbrooks/instruct-pix2pix"
).to(device)
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8)
return out.images[0]
def generate_video_from_text(prompt):
global TXT2VID_PIPE
if TXT2VID_PIPE is None:
TXT2VID_PIPE = make_pipe(
WanPipeline,
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
).to(device)
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12).frames[0]
return export_to_video(frames, "/tmp/wan_video.mp4", fps=8)
def generate_video_from_image(image):
global IMG2VID_PIPE
if IMG2VID_PIPE is None:
IMG2VID_PIPE = make_pipe(
StableVideoDiffusionPipeline,
"stabilityai/stable-video-diffusion-img2vid-xt",
variant="fp16" if dtype == torch.float16 else None
).to(device)
image = load_image(image).resize((512, 288))
frames = IMG2VID_PIPE(image, num_inference_steps=16).frames[0]
return export_to_video(frames, "/tmp/svd_video.mp4", fps=8)
with gr.Blocks() as demo:
gr.Markdown("## 🧠 Lightweight Any-to-Any AI Playground")
with gr.Tab("Text β†’ Image"):
text_input = gr.Textbox(label="Prompt")
image_output = gr.Image(label="Generated Image")
generate_button = gr.Button("Generate")
generate_button.click(generate_image_from_text, inputs=text_input, outputs=image_output)
with gr.Tab("Image β†’ Image"):
input_image = gr.Image(label="Input Image")
prompt_input = gr.Textbox(label="Edit Prompt")
output_image = gr.Image(label="Edited Image")
edit_button = gr.Button("Generate")
edit_button.click(generate_image_from_image_and_prompt, inputs=[input_image, prompt_input], outputs=output_image)
with gr.Tab("Text β†’ Video"):
video_prompt = gr.Textbox(label="Prompt")
video_output = gr.Video(label="Generated Video")
video_button = gr.Button("Generate")
video_button.click(generate_video_from_text, inputs=video_prompt, outputs=video_output)
with gr.Tab("Image β†’ Video"):
anim_image = gr.Image(label="Input Image")
anim_video_output = gr.Video(label="Animated Video")
anim_button = gr.Button("Animate")
anim_button.click(generate_video_from_image, inputs=anim_image, outputs=anim_video_output)
demo.launch()