Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,101 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
with gr.Blocks() as demo:
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
demo.
|
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
+
from diffusers import (
|
4 |
+
StableDiffusionPipeline,
|
5 |
+
StableDiffusionInstructPix2PixPipeline,
|
6 |
+
StableVideoDiffusionPipeline,
|
7 |
+
WanPipeline,
|
8 |
+
)
|
9 |
+
from diffusers.utils import export_to_video, load_image
|
10 |
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
13 |
|
14 |
+
# Pipeline factory
|
15 |
+
def make_pipe(cls, model_id, **kwargs):
|
16 |
+
pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
|
17 |
+
pipe.enable_model_cpu_offload()
|
18 |
+
return pipe
|
19 |
+
|
20 |
+
# Global model caches
|
21 |
+
TXT2IMG_PIPE = None
|
22 |
+
IMG2IMG_PIPE = None
|
23 |
+
TXT2VID_PIPE = None
|
24 |
+
IMG2VID_PIPE = None
|
25 |
+
|
26 |
+
# Text → Image
|
27 |
+
def generate_image_from_text(prompt):
|
28 |
+
global TXT2IMG_PIPE
|
29 |
+
if TXT2IMG_PIPE is None:
|
30 |
+
TXT2IMG_PIPE = make_pipe(
|
31 |
+
StableDiffusionPipeline,
|
32 |
+
"stabilityai/stable-diffusion-2-1-base"
|
33 |
+
).to(device)
|
34 |
+
return TXT2IMG_PIPE(prompt, num_inference_steps=20).images[0]
|
35 |
+
|
36 |
+
# Image → Image
|
37 |
+
def generate_image_from_image_and_prompt(image, prompt):
|
38 |
+
global IMG2IMG_PIPE
|
39 |
+
if IMG2IMG_PIPE is None:
|
40 |
+
IMG2IMG_PIPE = make_pipe(
|
41 |
+
StableDiffusionInstructPix2PixPipeline,
|
42 |
+
"timbrooks/instruct-pix2pix"
|
43 |
+
).to(device)
|
44 |
+
out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8)
|
45 |
+
return out.images[0]
|
46 |
+
|
47 |
+
# Text → Video
|
48 |
+
def generate_video_from_text(prompt):
|
49 |
+
global TXT2VID_PIPE
|
50 |
+
if TXT2VID_PIPE is None:
|
51 |
+
TXT2VID_PIPE = make_pipe(
|
52 |
+
WanPipeline,
|
53 |
+
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
54 |
+
).to(device)
|
55 |
+
frames = TXT2VID_PIPE(prompt=prompt, num_frames=12).frames[0]
|
56 |
+
return export_to_video(frames, "/tmp/wan_video.mp4", fps=8)
|
57 |
+
|
58 |
+
# Image → Video
|
59 |
+
def generate_video_from_image(image):
|
60 |
+
global IMG2VID_PIPE
|
61 |
+
if IMG2VID_PIPE is None:
|
62 |
+
IMG2VID_PIPE = make_pipe(
|
63 |
+
StableVideoDiffusionPipeline,
|
64 |
+
"stabilityai/stable-video-diffusion-img2vid-xt",
|
65 |
+
variant="fp16" if dtype == torch.float16 else None
|
66 |
+
).to(device)
|
67 |
+
image = load_image(image).resize((512, 288))
|
68 |
+
frames = IMG2VID_PIPE(image, num_inference_steps=16).frames[0]
|
69 |
+
return export_to_video(frames, "/tmp/svd_video.mp4", fps=8)
|
70 |
+
|
71 |
+
# Gradio Interface
|
72 |
with gr.Blocks() as demo:
|
73 |
+
gr.Markdown("# 🧠 Lightweight Any‑to‑Any AI Playground")
|
74 |
+
|
75 |
+
with gr.Tab("Text → Image"):
|
76 |
+
text_prompt = gr.Textbox(label="Prompt")
|
77 |
+
output_image = gr.Image(label="Generated Image")
|
78 |
+
text2img_button = gr.Button("Generate")
|
79 |
+
text2img_button.click(generate_image_from_text, inputs=text_prompt, outputs=output_image)
|
80 |
+
|
81 |
+
with gr.Tab("Image → Image"):
|
82 |
+
input_image = gr.Image(label="Input Image")
|
83 |
+
edit_prompt = gr.Textbox(label="Edit Prompt")
|
84 |
+
edited_image = gr.Image(label="Edited Image")
|
85 |
+
img2img_button = gr.Button("Generate")
|
86 |
+
img2img_button.click(generate_image_from_image_and_prompt, inputs=[input_image, edit_prompt], outputs=edited_image)
|
87 |
+
|
88 |
+
with gr.Tab("Text → Video"):
|
89 |
+
video_prompt = gr.Textbox(label="Prompt")
|
90 |
+
video_output = gr.Video(label="Generated Video")
|
91 |
+
txt2vid_button = gr.Button("Generate")
|
92 |
+
txt2vid_button.click(generate_video_from_text, inputs=video_prompt, outputs=video_output)
|
93 |
|
94 |
+
with gr.Tab("Image → Video"):
|
95 |
+
video_input_img = gr.Image(label="Input Image")
|
96 |
+
anim_video_output = gr.Video(label="Animated Video")
|
97 |
+
img2vid_button = gr.Button("Animate")
|
98 |
+
img2vid_button.click(generate_video_from_image, inputs=video_input_img, outputs=anim_video_output)
|
99 |
|
100 |
+
demo.queue()
|
101 |
+
demo.launch(show_error=True)
|