kevalfst commited on
Commit
868b112
Β·
verified Β·
1 Parent(s): f65db75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -43
app.py CHANGED
@@ -1,5 +1,8 @@
1
  import torch
2
  import gradio as gr
 
 
 
3
  from diffusers import (
4
  StableDiffusionPipeline,
5
  StableDiffusionInstructPix2PixPipeline,
@@ -7,59 +10,65 @@ from diffusers import (
7
  WanPipeline,
8
  )
9
  from diffusers.utils import export_to_video, load_image
10
- import random
11
- import numpy as np
12
 
13
- device = "cuda" if torch.cuda.is_available() else "cpu"
14
- dtype = torch.float16 if device == "cuda" else torch.float32
 
15
  MAX_SEED = np.iinfo(np.int32).max
16
 
17
- # Model cache
18
  TXT2IMG_PIPE = None
19
  IMG2IMG_PIPE = None
20
  TXT2VID_PIPE = None
21
  IMG2VID_PIPE = None
22
 
 
23
  def make_pipe(cls, model_id, **kwargs):
24
  pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
25
- pipe.enable_model_cpu_offload()
26
  return pipe
27
 
28
- # Functions
29
  def generate_image_from_text(prompt, seed, randomize_seed):
30
  global TXT2IMG_PIPE
31
  if TXT2IMG_PIPE is None:
32
- TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base").to(device)
33
  if randomize_seed:
34
  seed = random.randint(0, MAX_SEED)
35
  generator = torch.manual_seed(seed)
36
  image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0]
37
  return image, seed
38
 
 
39
  def generate_image_from_image_and_prompt(image, prompt, seed, randomize_seed):
40
  global IMG2IMG_PIPE
41
  if IMG2IMG_PIPE is None:
42
- IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix").to(device)
43
  if randomize_seed:
44
  seed = random.randint(0, MAX_SEED)
45
  generator = torch.manual_seed(seed)
46
  out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator)
47
  return out.images[0], seed
48
 
 
49
  def generate_video_from_text(prompt, seed, randomize_seed):
50
  global TXT2VID_PIPE
51
  if TXT2VID_PIPE is None:
52
- TXT2VID_PIPE = make_pipe(WanPipeline, "Wan-AI/Wan2.1-T2V-1.3B-Diffusers").to(device)
53
  if randomize_seed:
54
  seed = random.randint(0, MAX_SEED)
55
  generator = torch.manual_seed(seed)
56
  frames = TXT2VID_PIPE(prompt=prompt, num_frames=12, generator=generator).frames[0]
57
  return export_to_video(frames, "/tmp/wan_video.mp4", fps=8), seed
58
 
 
59
  def generate_video_from_image(image, seed, randomize_seed):
60
  global IMG2VID_PIPE
61
  if IMG2VID_PIPE is None:
62
- IMG2VID_PIPE = make_pipe(StableVideoDiffusionPipeline, "stabilityai/stable-video-diffusion-img2vid-xt", variant="fp16" if dtype == torch.float16 else None).to(device)
 
 
 
63
  if randomize_seed:
64
  seed = random.randint(0, MAX_SEED)
65
  generator = torch.manual_seed(seed)
@@ -67,65 +76,61 @@ def generate_video_from_image(image, seed, randomize_seed):
67
  frames = IMG2VID_PIPE(image=image, num_inference_steps=16, generator=generator).frames[0]
68
  return export_to_video(frames, "/tmp/svd_video.mp4", fps=8), seed
69
 
70
- # UI
71
- with gr.Blocks(css="footer {display:none !important}") as demo:
72
- gr.Markdown("# 🧠 AI Playground – Multi-Mode Generator")
73
 
74
  with gr.Tabs():
75
  # Text β†’ Image
76
  with gr.Tab("Text β†’ Image"):
77
- with gr.Row():
78
- prompt_txt = gr.Textbox(label="Prompt")
79
- generate_btn = gr.Button("Generate")
80
  result_img = gr.Image()
81
  seed_txt = gr.Slider(0, MAX_SEED, value=42, label="Seed")
82
- rand_seed_txt = gr.Checkbox(label="Randomize seed", value=True)
83
- generate_btn.click(
84
- fn=generate_image_from_text,
85
- inputs=[prompt_txt, seed_txt, rand_seed_txt],
86
  outputs=[result_img, seed_txt]
87
  )
88
 
89
  # Image β†’ Image
90
  with gr.Tab("Image β†’ Image"):
91
- with gr.Row():
92
- image_in = gr.Image(label="Input Image")
93
- prompt_img = gr.Textbox(label="Edit Prompt")
94
- generate_btn2 = gr.Button("Generate")
95
  result_img2 = gr.Image()
96
  seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed")
97
- rand_seed_img = gr.Checkbox(label="Randomize seed", value=True)
98
- generate_btn2.click(
99
- fn=generate_image_from_image_and_prompt,
100
- inputs=[image_in, prompt_img, seed_img, rand_seed_img],
101
  outputs=[result_img2, seed_img]
102
  )
103
 
104
  # Text β†’ Video
105
  with gr.Tab("Text β†’ Video"):
106
- with gr.Row():
107
- prompt_vid = gr.Textbox(label="Prompt")
108
- generate_btn3 = gr.Button("Generate")
109
  result_vid = gr.Video()
110
  seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed")
111
- rand_seed_vid = gr.Checkbox(label="Randomize seed", value=True)
112
- generate_btn3.click(
113
- fn=generate_video_from_text,
114
- inputs=[prompt_vid, seed_vid, rand_seed_vid],
115
  outputs=[result_vid, seed_vid]
116
  )
117
 
118
  # Image β†’ Video
119
  with gr.Tab("Image β†’ Video"):
120
- with gr.Row():
121
- image_in_vid = gr.Image(label="Input Image")
122
- generate_btn4 = gr.Button("Animate")
123
  result_vid2 = gr.Video()
124
  seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed")
125
- rand_seed_vid2 = gr.Checkbox(label="Randomize seed", value=True)
126
- generate_btn4.click(
127
- fn=generate_video_from_image,
128
- inputs=[image_in_vid, seed_vid2, rand_seed_vid2],
129
  outputs=[result_vid2, seed_vid2]
130
  )
131
 
 
1
  import torch
2
  import gradio as gr
3
+ import numpy as np
4
+ import random
5
+
6
  from diffusers import (
7
  StableDiffusionPipeline,
8
  StableDiffusionInstructPix2PixPipeline,
 
10
  WanPipeline,
11
  )
12
  from diffusers.utils import export_to_video, load_image
 
 
13
 
14
+ # Force CPU mode
15
+ device = "cpu"
16
+ dtype = torch.float32
17
  MAX_SEED = np.iinfo(np.int32).max
18
 
19
+ # Global pipeline holders
20
  TXT2IMG_PIPE = None
21
  IMG2IMG_PIPE = None
22
  TXT2VID_PIPE = None
23
  IMG2VID_PIPE = None
24
 
25
+ # Helper to load models
26
  def make_pipe(cls, model_id, **kwargs):
27
  pipe = cls.from_pretrained(model_id, torch_dtype=dtype, **kwargs)
28
+ pipe.to(device)
29
  return pipe
30
 
31
+ # Text β†’ Image
32
  def generate_image_from_text(prompt, seed, randomize_seed):
33
  global TXT2IMG_PIPE
34
  if TXT2IMG_PIPE is None:
35
+ TXT2IMG_PIPE = make_pipe(StableDiffusionPipeline, "stabilityai/stable-diffusion-2-1-base")
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
  generator = torch.manual_seed(seed)
39
  image = TXT2IMG_PIPE(prompt=prompt, num_inference_steps=20, generator=generator).images[0]
40
  return image, seed
41
 
42
+ # Image β†’ Image
43
  def generate_image_from_image_and_prompt(image, prompt, seed, randomize_seed):
44
  global IMG2IMG_PIPE
45
  if IMG2IMG_PIPE is None:
46
+ IMG2IMG_PIPE = make_pipe(StableDiffusionInstructPix2PixPipeline, "timbrooks/instruct-pix2pix")
47
  if randomize_seed:
48
  seed = random.randint(0, MAX_SEED)
49
  generator = torch.manual_seed(seed)
50
  out = IMG2IMG_PIPE(prompt=prompt, image=image, num_inference_steps=8, generator=generator)
51
  return out.images[0], seed
52
 
53
+ # Text β†’ Video
54
  def generate_video_from_text(prompt, seed, randomize_seed):
55
  global TXT2VID_PIPE
56
  if TXT2VID_PIPE is None:
57
+ TXT2VID_PIPE = make_pipe(WanPipeline, "Wan-AI/Wan2.1-T2V-1.3B-Diffusers")
58
  if randomize_seed:
59
  seed = random.randint(0, MAX_SEED)
60
  generator = torch.manual_seed(seed)
61
  frames = TXT2VID_PIPE(prompt=prompt, num_frames=12, generator=generator).frames[0]
62
  return export_to_video(frames, "/tmp/wan_video.mp4", fps=8), seed
63
 
64
+ # Image β†’ Video
65
  def generate_video_from_image(image, seed, randomize_seed):
66
  global IMG2VID_PIPE
67
  if IMG2VID_PIPE is None:
68
+ IMG2VID_PIPE = make_pipe(
69
+ StableVideoDiffusionPipeline,
70
+ "stabilityai/stable-video-diffusion-img2vid-xt"
71
+ )
72
  if randomize_seed:
73
  seed = random.randint(0, MAX_SEED)
74
  generator = torch.manual_seed(seed)
 
76
  frames = IMG2VID_PIPE(image=image, num_inference_steps=16, generator=generator).frames[0]
77
  return export_to_video(frames, "/tmp/svd_video.mp4", fps=8), seed
78
 
79
+ # Gradio Interface
80
+ with gr.Blocks() as demo:
81
+ gr.Markdown("# 🧠 AI Playground – Text & Image β†’ Image & Video")
82
 
83
  with gr.Tabs():
84
  # Text β†’ Image
85
  with gr.Tab("Text β†’ Image"):
86
+ prompt_txt = gr.Textbox(label="Prompt")
87
+ btn_txt2img = gr.Button("Generate")
 
88
  result_img = gr.Image()
89
  seed_txt = gr.Slider(0, MAX_SEED, value=42, label="Seed")
90
+ rand_txt = gr.Checkbox(label="Randomize seed", value=True)
91
+ btn_txt2img.click(
92
+ generate_image_from_text,
93
+ inputs=[prompt_txt, seed_txt, rand_txt],
94
  outputs=[result_img, seed_txt]
95
  )
96
 
97
  # Image β†’ Image
98
  with gr.Tab("Image β†’ Image"):
99
+ image_in = gr.Image(label="Input Image")
100
+ prompt_img = gr.Textbox(label="Edit Prompt")
101
+ btn_img2img = gr.Button("Generate")
 
102
  result_img2 = gr.Image()
103
  seed_img = gr.Slider(0, MAX_SEED, value=123, label="Seed")
104
+ rand_img = gr.Checkbox(label="Randomize seed", value=True)
105
+ btn_img2img.click(
106
+ generate_image_from_image_and_prompt,
107
+ inputs=[image_in, prompt_img, seed_img, rand_img],
108
  outputs=[result_img2, seed_img]
109
  )
110
 
111
  # Text β†’ Video
112
  with gr.Tab("Text β†’ Video"):
113
+ prompt_vid = gr.Textbox(label="Prompt")
114
+ btn_txt2vid = gr.Button("Generate")
 
115
  result_vid = gr.Video()
116
  seed_vid = gr.Slider(0, MAX_SEED, value=555, label="Seed")
117
+ rand_vid = gr.Checkbox(label="Randomize seed", value=True)
118
+ btn_txt2vid.click(
119
+ generate_video_from_text,
120
+ inputs=[prompt_vid, seed_vid, rand_vid],
121
  outputs=[result_vid, seed_vid]
122
  )
123
 
124
  # Image β†’ Video
125
  with gr.Tab("Image β†’ Video"):
126
+ image_vid = gr.Image(label="Input Image")
127
+ btn_img2vid = gr.Button("Animate")
 
128
  result_vid2 = gr.Video()
129
  seed_vid2 = gr.Slider(0, MAX_SEED, value=999, label="Seed")
130
+ rand_vid2 = gr.Checkbox(label="Randomize seed", value=True)
131
+ btn_img2vid.click(
132
+ generate_video_from_image,
133
+ inputs=[image_vid, seed_vid2, rand_vid2],
134
  outputs=[result_vid2, seed_vid2]
135
  )
136