kevalfst commited on
Commit
bdd1e49
Β·
verified Β·
1 Parent(s): 7ea27ba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -55
app.py CHANGED
@@ -8,106 +8,96 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
8
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
9
  MAX_SEED = 2**32 - 1
10
 
11
- # --- Model lists ---
12
  image_models = {
13
- "Stable Diffusion 1.5": "runwayml/stable-diffusion-v1-5",
14
  "Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1",
15
- "SDXL Base 1.0": "stabilityai/stable-diffusion-xl-base-1.0",
16
  "Playground v2": "playgroundai/playground-v2-1024px-aesthetic",
17
- "Kandinsky 3": "kandinsky-community/kandinsky-3",
18
  "PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
 
19
  "BLIP Diffusion": "Salesforce/blipdiffusion",
20
- "Muse 512": "amused/muse-512-finetuned",
21
- "Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0",
22
- "OpenJourney": "prompthero/openjourney"
23
- }
24
-
25
- video_models = {
26
- "AnimateDiff": "animate-diff/animate-diff",
27
- "CogVideoX-5b": "THUDM/CogVideoX-5b",
28
- "HunyuanVideo": "tencent/HunyuanVideo",
29
- "LTX-Video": "Lightricks/LTX-Video",
30
- "ModelScope T2V": "damo-vilab/modelscope-text-to-video-synthesis",
31
- "VideoCrafter": "videocrafter/videocrafter",
32
- "Mochi-1": "mochi/mochi-1",
33
- "Allegro": "allegro/allegro",
34
- "OpenSora": "LanguageBind/Open-Sora-Plan-v1.2.0",
35
- "Zer0Scope": "zero-scope/zero-scope"
36
  }
37
 
38
  text_models = {
39
- "GPT-2": "gpt2",
40
  "GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B",
41
- "GPT-J 6B": "EleutherAI/gpt-j-6B",
42
  "BLOOM 1.1B": "bigscience/bloom-1b1",
 
43
  "Falcon 7B": "tiiuae/falcon-7b",
44
- "MPT 7B": "mosaicml/mpt-7b",
45
- "LLaMA 2 7B": "meta-llama/Llama-2-7b-hf",
46
- "BTLM 3B": "cerebras/btlm-3b-8k-base",
47
  "XGen 7B": "Salesforce/xgen-7b-8k-base",
48
- "StableLM 2": "stabilityai/stablelm-2-1_6b"
 
 
 
49
  }
50
 
51
- # --- Caching loaded pipelines ---
52
  image_pipes = {}
53
  text_pipes = {}
54
 
55
- # --- Functional logic ---
56
- def generate_image(prompt, model_name, seed, randomize_seed):
57
  if randomize_seed:
58
  seed = random.randint(0, MAX_SEED)
59
  generator = torch.manual_seed(seed)
60
 
 
61
  if model_name not in image_pipes:
62
  image_pipes[model_name] = DiffusionPipeline.from_pretrained(
63
  image_models[model_name],
64
  torch_dtype=torch_dtype
65
  ).to(device)
66
-
67
  pipe = image_pipes[model_name]
68
- image = pipe(prompt=prompt, generator=generator, num_inference_steps=25, width=512, height=512).images[0]
69
- return image, seed
70
 
71
- def generate_text(prompt, model_name):
 
 
 
 
 
 
 
72
  if model_name not in text_pipes:
73
  text_pipes[model_name] = pipeline("text-generation", model=text_models[model_name], device=0 if device == "cuda" else -1)
74
  pipe = text_pipes[model_name]
75
- output = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text']
76
- return output
77
 
78
- def generate_video(prompt, model_name):
79
- # Placeholder: real video models would return video frames
80
- return f"[Video placeholder] Model: {model_name}\nPrompt: {prompt}"
 
81
 
82
- # --- Interface ---
83
  with gr.Blocks() as demo:
84
- gr.Markdown("# πŸ”„ Multi-Task AI Generator")
85
 
86
  with gr.Tabs():
87
- # Tab 1: Image Generation
88
- with gr.Tab("πŸ–ΌοΈ Image"):
89
  img_prompt = gr.Textbox(label="Prompt")
90
- img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5", label="Select Image Model")
91
  img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed")
92
  img_rand = gr.Checkbox(label="Randomize seed", value=True)
93
  img_btn = gr.Button("Generate Image")
94
  img_out = gr.Image()
95
  img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed])
96
 
97
- # Tab 2: Video Generation
98
- with gr.Tab("πŸŽ₯ Video"):
99
- vid_prompt = gr.Textbox(label="Prompt")
100
- vid_model = gr.Dropdown(choices=list(video_models.keys()), value="AnimateDiff", label="Select Video Model")
101
- vid_btn = gr.Button("Generate Video")
102
- vid_out = gr.Textbox(label="Result (Placeholder)")
103
- vid_btn.click(fn=generate_video, inputs=[vid_prompt, vid_model], outputs=vid_out)
104
-
105
- # Tab 3: Text Generation
106
- with gr.Tab("πŸ“ Text"):
107
  txt_prompt = gr.Textbox(label="Prompt")
108
- txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2", label="Select Text Model")
109
  txt_btn = gr.Button("Generate Text")
110
- txt_out = gr.Textbox(label="Generated Text")
111
  txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=txt_out)
112
 
 
 
 
 
 
 
 
 
113
  demo.launch(show_error=True)
 
8
  torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
9
  MAX_SEED = 2**32 - 1
10
 
11
+ # --- Model lists ordered by size (light to heavy) ---
12
  image_models = {
13
+ "Stable Diffusion 1.5 (light)": "runwayml/stable-diffusion-v1-5",
14
  "Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1",
15
+ "Dreamlike 2.0": "dreamlike-art/dreamlike-photoreal-2.0",
16
  "Playground v2": "playgroundai/playground-v2-1024px-aesthetic",
17
+ "Muse 512": "amused/muse-512-finetuned",
18
  "PixArt": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
19
+ "Kandinsky 3": "kandinsky-community/kandinsky-3",
20
  "BLIP Diffusion": "Salesforce/blipdiffusion",
21
+ "SDXL Base 1.0 (heavy)": "stabilityai/stable-diffusion-xl-base-1.0",
22
+ "OpenJourney (heavy)": "prompthero/openjourney"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  }
24
 
25
  text_models = {
26
+ "GPT-2 (light)": "gpt2",
27
  "GPT-Neo 1.3B": "EleutherAI/gpt-neo-1.3B",
 
28
  "BLOOM 1.1B": "bigscience/bloom-1b1",
29
+ "GPT-J 6B": "EleutherAI/gpt-j-6B",
30
  "Falcon 7B": "tiiuae/falcon-7b",
 
 
 
31
  "XGen 7B": "Salesforce/xgen-7b-8k-base",
32
+ "BTLM 3B": "cerebras/btlm-3b-8k-base",
33
+ "MPT 7B": "mosaicml/mpt-7b",
34
+ "StableLM 2": "stabilityai/stablelm-2-1_6b",
35
+ "LLaMA 2 7B (heavy)": "meta-llama/Llama-2-7b-hf"
36
  }
37
 
38
+ # Cache
39
  image_pipes = {}
40
  text_pipes = {}
41
 
42
+ def generate_image(prompt, model_name, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)):
 
43
  if randomize_seed:
44
  seed = random.randint(0, MAX_SEED)
45
  generator = torch.manual_seed(seed)
46
 
47
+ progress(0, desc="Loading model...")
48
  if model_name not in image_pipes:
49
  image_pipes[model_name] = DiffusionPipeline.from_pretrained(
50
  image_models[model_name],
51
  torch_dtype=torch_dtype
52
  ).to(device)
 
53
  pipe = image_pipes[model_name]
 
 
54
 
55
+ progress(25, desc="Running inference (step 1/3)...")
56
+ result = pipe(prompt=prompt, generator=generator, num_inference_steps=30, width=512, height=512)
57
+
58
+ progress(100, desc="Done.")
59
+ return result.images[0], seed
60
+
61
+ def generate_text(prompt, model_name, progress=gr.Progress(track_tqdm=True)):
62
+ progress(0, desc="Loading model...")
63
  if model_name not in text_pipes:
64
  text_pipes[model_name] = pipeline("text-generation", model=text_models[model_name], device=0 if device == "cuda" else -1)
65
  pipe = text_pipes[model_name]
 
 
66
 
67
+ progress(50, desc="Generating text...")
68
+ result = pipe(prompt, max_length=100, do_sample=True)[0]['generated_text']
69
+ progress(100, desc="Done.")
70
+ return result
71
 
72
+ # Gradio Interface
73
  with gr.Blocks() as demo:
74
+ gr.Markdown("# 🧠 Multi-Model AI Playground with Progress")
75
 
76
  with gr.Tabs():
77
+ # πŸ–ΌοΈ Image Gen Tab
78
+ with gr.Tab("πŸ–ΌοΈ Image Generation"):
79
  img_prompt = gr.Textbox(label="Prompt")
80
+ img_model = gr.Dropdown(choices=list(image_models.keys()), value="Stable Diffusion 1.5 (light)", label="Image Model")
81
  img_seed = gr.Slider(0, MAX_SEED, value=42, label="Seed")
82
  img_rand = gr.Checkbox(label="Randomize seed", value=True)
83
  img_btn = gr.Button("Generate Image")
84
  img_out = gr.Image()
85
  img_btn.click(fn=generate_image, inputs=[img_prompt, img_model, img_seed, img_rand], outputs=[img_out, img_seed])
86
 
87
+ # πŸ“ Text Gen Tab
88
+ with gr.Tab("πŸ“ Text Generation"):
 
 
 
 
 
 
 
 
89
  txt_prompt = gr.Textbox(label="Prompt")
90
+ txt_model = gr.Dropdown(choices=list(text_models.keys()), value="GPT-2 (light)", label="Text Model")
91
  txt_btn = gr.Button("Generate Text")
92
+ txt_out = gr.Textbox(label="Output Text")
93
  txt_btn.click(fn=generate_text, inputs=[txt_prompt, txt_model], outputs=txt_out)
94
 
95
+ # πŸŽ₯ Video Gen Tab (placeholder)
96
+ with gr.Tab("πŸŽ₯ Video Generation (Placeholder)"):
97
+ gr.Markdown("⚠️ Video generation is placeholder only. Models require special setup.")
98
+ vid_prompt = gr.Textbox(label="Prompt")
99
+ vid_btn = gr.Button("Pretend to Generate")
100
+ vid_out = gr.Textbox(label="Result")
101
+ vid_btn.click(lambda x: f"Fake video output for: {x}", inputs=[vid_prompt], outputs=[vid_out])
102
+
103
  demo.launch(show_error=True)