import gradio as gr import numpy as np import random import torch from diffusers import DiffusionPipeline # Define available models and their corresponding Hugging Face repositories MODEL_REPOS = { "Stable Diffusion XL Base 1.0": "stabilityai/stable-diffusion-xl-base-1.0", "SDXL-Turbo": "stabilityai/sdxl-turbo", "Playground v2 1024px Aesthetic": "playgroundai/playground-v2-1024px-aesthetic", "Segmind Vega": "segmind/Segmind-Vega", "SSD-1B": "segmind/SSD-1B", "Kandinsky 3": "kandinsky-community/kandinsky-3", "PixArt-LCM-XL-2-1024-MS": "PixArt-alpha/PixArt-LCM-XL-2-1024-MS", "BLIP Diffusion": "salesforce/blipdiffusion", "Muse-512-Finetuned": "amused/muse-512-finetuned", "Flux 1 Dev": "black-forest-labs/FLUX.1-dev" } # Set device device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 # Cache for loaded pipelines loaded_pipelines = {} # Maximum seed value MAX_SEED = np.iinfo(np.int32).max def load_pipeline(model_name): """Load and cache the pipeline for the selected model.""" if model_name in loaded_pipelines: return loaded_pipelines[model_name] repo_id = MODEL_REPOS[model_name] try: pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype) pipeline.to(device) loaded_pipelines[model_name] = pipeline return pipeline except Exception as e: raise RuntimeError(f"Failed to load model '{model_name}': {e}") def generate_image(prompt, model_name, width, height, guidance_scale, num_inference_steps, seed, randomize_seed): """Generate an image using the selected model and parameters.""" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) pipeline = load_pipeline(model_name) try: image = pipeline( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return image, seed except Exception as e: raise RuntimeError(f"Image generation failed: {e}") # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("# 🖼️ Text-to-Image Generator with Multiple Models") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here") model_name = gr.Dropdown(label="Select Model", choices=list(MODEL_REPOS.keys()), value="Stable Diffusion XL Base 1.0") width = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=512) height = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=512) guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.5, value=7.5) num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=50) seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) generate_button = gr.Button("Generate Image") with gr.Column(): output_image = gr.Image(label="Generated Image") output_seed = gr.Textbox(label="Used Seed", interactive=False) generate_button.click( fn=generate_image, inputs=[prompt, model_name, width, height, guidance_scale, num_inference_steps, seed, randomize_seed], outputs=[output_image, output_seed] ) if __name__ == "__main__": demo.launch()