Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from tensorflow.keras.models import load_model
|
|
4 |
from PIL import Image
|
5 |
import tensorflow as tf
|
6 |
|
7 |
-
#
|
8 |
def euclidean_distance(vects):
|
9 |
x, y = vects
|
10 |
sum_square = tf.reduce_sum(tf.square(x - y), axis=1, keepdims=True)
|
@@ -12,14 +12,14 @@ def euclidean_distance(vects):
|
|
12 |
|
13 |
model = load_model("mnist_siamese_model.keras", custom_objects={'euclidean_distance': euclidean_distance})
|
14 |
|
15 |
-
#
|
16 |
def preprocess(img):
|
17 |
img = img.convert("L").resize((28, 28))
|
18 |
img = np.array(img).astype("float32") / 255.0
|
19 |
img = np.expand_dims(img, axis=-1) # (28, 28, 1)
|
20 |
return img
|
21 |
|
22 |
-
#
|
23 |
def predict(img1, img2):
|
24 |
img1 = preprocess(img1)
|
25 |
img2 = preprocess(img2)
|
@@ -29,9 +29,9 @@ def predict(img1, img2):
|
|
29 |
distance = model.predict([img1, img2])[0][0]
|
30 |
threshold = 0.5
|
31 |
same = distance < threshold
|
32 |
-
return f"¿
|
33 |
|
34 |
-
#
|
35 |
interface = gr.Interface(
|
36 |
fn=predict,
|
37 |
inputs=[
|
|
|
4 |
from PIL import Image
|
5 |
import tensorflow as tf
|
6 |
|
7 |
+
#Cargar modelo
|
8 |
def euclidean_distance(vects):
|
9 |
x, y = vects
|
10 |
sum_square = tf.reduce_sum(tf.square(x - y), axis=1, keepdims=True)
|
|
|
12 |
|
13 |
model = load_model("mnist_siamese_model.keras", custom_objects={'euclidean_distance': euclidean_distance})
|
14 |
|
15 |
+
#Preprocesar imágenes
|
16 |
def preprocess(img):
|
17 |
img = img.convert("L").resize((28, 28))
|
18 |
img = np.array(img).astype("float32") / 255.0
|
19 |
img = np.expand_dims(img, axis=-1) # (28, 28, 1)
|
20 |
return img
|
21 |
|
22 |
+
#Función de predicción
|
23 |
def predict(img1, img2):
|
24 |
img1 = preprocess(img1)
|
25 |
img2 = preprocess(img2)
|
|
|
29 |
distance = model.predict([img1, img2])[0][0]
|
30 |
threshold = 0.5
|
31 |
same = distance < threshold
|
32 |
+
return f"¿Es el mismo dígito? {'Sí' if same else 'No'} (distancia: {distance:.4f})"
|
33 |
|
34 |
+
#Interfaz Gradio
|
35 |
interface = gr.Interface(
|
36 |
fn=predict,
|
37 |
inputs=[
|