Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
|
4 |
+
# -----------------------------------------
|
5 |
+
# GLOBALS for Bag-of-Words ML Simulation
|
6 |
+
# -----------------------------------------
|
7 |
+
positive_word_counts = {}
|
8 |
+
negative_word_counts = {}
|
9 |
+
training_data = []
|
10 |
+
|
11 |
+
# -----------------------------------------
|
12 |
+
# 1) Training Function
|
13 |
+
# -----------------------------------------
|
14 |
+
def train_model(statement, label):
|
15 |
+
"""
|
16 |
+
Splits a statement into words, increments counts in
|
17 |
+
positive_word_counts or negative_word_counts depending on label.
|
18 |
+
Returns HTML feedback showing what's been learned.
|
19 |
+
"""
|
20 |
+
global positive_word_counts, negative_word_counts, training_data
|
21 |
+
|
22 |
+
# Basic error check
|
23 |
+
statement = statement.strip()
|
24 |
+
if not statement:
|
25 |
+
return "<p style='color:red;'>Please enter a valid training statement.</p>"
|
26 |
+
|
27 |
+
# Tokenize by letters only
|
28 |
+
words = re.findall(r"[a-zA-Z]+", statement.lower())
|
29 |
+
|
30 |
+
# Update dictionary
|
31 |
+
if label == "Positive":
|
32 |
+
for w in words:
|
33 |
+
positive_word_counts[w] = positive_word_counts.get(w, 0) + 1
|
34 |
+
else:
|
35 |
+
for w in words:
|
36 |
+
negative_word_counts[w] = negative_word_counts.get(w, 0) + 1
|
37 |
+
|
38 |
+
training_data.append((statement, label))
|
39 |
+
|
40 |
+
# Construct feedback
|
41 |
+
pos_count = len(positive_word_counts)
|
42 |
+
neg_count = len(negative_word_counts)
|
43 |
+
response = (
|
44 |
+
f"<p><b>Trained:</b> '{statement}' as {label}</p>"
|
45 |
+
f"<p>Learned {pos_count} unique positive words "
|
46 |
+
f"and {neg_count} unique negative words so far.</p>"
|
47 |
+
)
|
48 |
+
return response
|
49 |
+
|
50 |
+
# -----------------------------------------
|
51 |
+
# 2) Classification Function
|
52 |
+
# -----------------------------------------
|
53 |
+
def classify_text(statement):
|
54 |
+
"""
|
55 |
+
Counts how many times each word appears in positive vs. negative.
|
56 |
+
Returns the classification result + an explanation.
|
57 |
+
"""
|
58 |
+
statement = statement.strip()
|
59 |
+
if not statement:
|
60 |
+
return "<p style='color:red;'>Please enter a statement to classify.</p>"
|
61 |
+
|
62 |
+
words = re.findall(r"[a-zA-Z]+", statement.lower())
|
63 |
+
pos_score = 0
|
64 |
+
neg_score = 0
|
65 |
+
|
66 |
+
# Accumulate scores
|
67 |
+
for w in words:
|
68 |
+
pos_score += positive_word_counts.get(w, 0)
|
69 |
+
neg_score += negative_word_counts.get(w, 0)
|
70 |
+
|
71 |
+
# Decide label
|
72 |
+
label = "Positive" if pos_score >= neg_score else "Negative"
|
73 |
+
|
74 |
+
explanation = f"""
|
75 |
+
<p><b>Classification:</b> '{statement}' → {label}</p>
|
76 |
+
<p>Pos score: {pos_score}, Neg score: {neg_score}</p>
|
77 |
+
<h4>How This Simulated ML Works</h4>
|
78 |
+
<ul>
|
79 |
+
<li>When you train a statement, each word is counted as either positive or negative.</li>
|
80 |
+
<li>When classifying, we sum how many times those words appeared in positive vs. negative examples.</li>
|
81 |
+
<li>If there are more 'positive' occurrences, we predict Positive; otherwise Negative.</li>
|
82 |
+
</ul>
|
83 |
+
<p>This is a basic 'Bag-of-Words' approach. Real ML uses more sophisticated methods and bigger datasets.</p>
|
84 |
+
"""
|
85 |
+
return explanation
|
86 |
+
|
87 |
+
# -----------------------------------------
|
88 |
+
# 3) Gradio Interface
|
89 |
+
# -----------------------------------------
|
90 |
+
with gr.Blocks() as demo:
|
91 |
+
gr.Markdown("## Simulated Machine Learning (Bag-of-Words) Demo")
|
92 |
+
gr.Markdown("Train a simple word-count-based model, then classify new statements.")
|
93 |
+
|
94 |
+
gr.Markdown("### Training Section")
|
95 |
+
with gr.Row():
|
96 |
+
train_statement_input = gr.Textbox(
|
97 |
+
label="Training Statement",
|
98 |
+
placeholder="e.g. I love this place"
|
99 |
+
)
|
100 |
+
train_label_dropdown = gr.Dropdown(
|
101 |
+
choices=["Positive", "Negative"],
|
102 |
+
value="Positive",
|
103 |
+
label="Label"
|
104 |
+
)
|
105 |
+
train_button = gr.Button("Train Statement")
|
106 |
+
train_output = gr.HTML()
|
107 |
+
|
108 |
+
train_button.click(
|
109 |
+
fn=train_model,
|
110 |
+
inputs=[train_statement_input, train_label_dropdown],
|
111 |
+
outputs=train_output
|
112 |
+
)
|
113 |
+
|
114 |
+
gr.Markdown("### Classification Section")
|
115 |
+
with gr.Row():
|
116 |
+
classify_statement_input = gr.Textbox(
|
117 |
+
label="Test Statement",
|
118 |
+
placeholder="e.g. I really love these tacos"
|
119 |
+
)
|
120 |
+
classify_button = gr.Button("Classify")
|
121 |
+
classify_output = gr.HTML()
|
122 |
+
|
123 |
+
classify_button.click(
|
124 |
+
fn=classify_text,
|
125 |
+
inputs=[classify_statement_input],
|
126 |
+
outputs=classify_output
|
127 |
+
)
|
128 |
+
|
129 |
+
demo.launch()
|