Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,71 @@
|
|
1 |
-
from
|
2 |
|
3 |
-
import
|
4 |
import random
|
5 |
-
import
|
|
|
6 |
import gradio as gr
|
|
|
|
|
7 |
import spaces
|
8 |
import torch
|
9 |
-
from PIL import Image
|
10 |
from diffusers import FluxInpaintPipeline
|
11 |
-
|
12 |
-
torch.cuda.empty_cache()
|
13 |
|
14 |
MARKDOWN = """
|
15 |
# FLUX Inpainting
|
16 |
-
Model used FLUX.1-schnell.
|
17 |
"""
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
IMAGE_SIZE =
|
21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
-
|
23 |
-
|
24 |
-
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
25 |
-
image = image.convert("RGBA")
|
26 |
-
data = image.getdata()
|
27 |
-
new_data = []
|
28 |
-
for item in data:
|
29 |
-
avg = sum(item[:3]) / 3
|
30 |
-
if avg < threshold:
|
31 |
-
new_data.append((0, 0, 0, 0))
|
32 |
-
else:
|
33 |
-
new_data.append(item)
|
34 |
-
|
35 |
-
image.putdata(new_data)
|
36 |
-
return image
|
37 |
-
|
38 |
-
|
39 |
-
# EXAMPLES = [
|
40 |
-
# [
|
41 |
-
# {
|
42 |
-
# "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
43 |
-
# "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))],
|
44 |
-
# "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
45 |
-
# },
|
46 |
-
# "little lion",
|
47 |
-
# 42,
|
48 |
-
# False,
|
49 |
-
# 0.85,
|
50 |
-
# 30
|
51 |
-
# ],
|
52 |
-
# [
|
53 |
-
# {
|
54 |
-
# "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
55 |
-
# "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))],
|
56 |
-
# "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
|
57 |
-
# },
|
58 |
-
# "tribal tattoos",
|
59 |
-
# 42,
|
60 |
-
# False,
|
61 |
-
# 0.85,
|
62 |
-
# 30
|
63 |
-
# ]
|
64 |
-
# ]
|
65 |
-
|
66 |
-
pipe = FluxInpaintPipeline.from_pretrained(
|
67 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
original_resolution_wh: Tuple[int, int],
|
72 |
maximum_dimension: int = IMAGE_SIZE
|
73 |
) -> Tuple[int, int]:
|
74 |
width, height = original_resolution_wh
|
75 |
|
76 |
-
# if width <= maximum_dimension and height <= maximum_dimension:
|
77 |
-
# width = width - (width % 32)
|
78 |
-
# height = height - (height % 32)
|
79 |
-
# return width, height
|
80 |
-
|
81 |
if width > height:
|
82 |
scaling_factor = maximum_dimension / width
|
83 |
else:
|
@@ -92,77 +80,191 @@ def resize_image_dimensions(
|
|
92 |
return new_width, new_height
|
93 |
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
def process(
|
|
|
97 |
input_image_editor: dict,
|
98 |
-
|
|
|
|
|
|
|
99 |
seed_slicer: int,
|
100 |
randomize_seed_checkbox: bool,
|
101 |
strength_slider: float,
|
102 |
-
num_inference_steps_slider: int
|
103 |
-
progress=gr.Progress(track_tqdm=True)
|
104 |
):
|
105 |
-
if not
|
106 |
-
gr.Info("Please enter
|
107 |
return None, None
|
108 |
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
|
112 |
if not image:
|
113 |
gr.Info("Please upload an image.")
|
114 |
return None, None
|
115 |
|
116 |
-
if not
|
117 |
-
gr.Info("Please draw a mask
|
118 |
return None, None
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
|
124 |
-
if
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
|
142 |
with gr.Blocks() as demo:
|
|
|
143 |
gr.Markdown(MARKDOWN)
|
144 |
with gr.Row():
|
145 |
with gr.Column():
|
146 |
input_image_editor_component = gr.ImageEditor(
|
147 |
label='Image',
|
148 |
-
type='
|
149 |
sources=["upload", "webcam"],
|
150 |
image_mode='RGB',
|
151 |
layers=False,
|
152 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
153 |
|
154 |
with gr.Row():
|
155 |
-
|
156 |
-
label="
|
157 |
show_label=False,
|
158 |
max_lines=1,
|
159 |
-
placeholder="Enter
|
160 |
container=False,
|
161 |
)
|
162 |
submit_button_component = gr.Button(
|
163 |
value='Submit', variant='primary', scale=0)
|
164 |
|
165 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
seed_slicer_component = gr.Slider(
|
167 |
label="Seed",
|
168 |
minimum=0,
|
@@ -177,9 +279,9 @@ with gr.Blocks() as demo:
|
|
177 |
with gr.Row():
|
178 |
strength_slider_component = gr.Slider(
|
179 |
label="Strength",
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
minimum=0,
|
184 |
maximum=1,
|
185 |
step=0.01,
|
@@ -188,10 +290,10 @@ with gr.Blocks() as demo:
|
|
188 |
|
189 |
num_inference_steps_slider_component = gr.Slider(
|
190 |
label="Number of inference steps",
|
191 |
-
|
192 |
-
|
193 |
minimum=1,
|
194 |
-
maximum=
|
195 |
step=1,
|
196 |
value=20,
|
197 |
)
|
@@ -201,31 +303,36 @@ with gr.Blocks() as demo:
|
|
201 |
with gr.Accordion("Debug", open=False):
|
202 |
output_mask_component = gr.Image(
|
203 |
type='pil', image_mode='RGB', label='Input mask', format="png")
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
223 |
|
224 |
submit_button_component.click(
|
225 |
fn=process,
|
226 |
inputs=[
|
|
|
227 |
input_image_editor_component,
|
228 |
-
|
|
|
|
|
|
|
229 |
seed_slicer_component,
|
230 |
randomize_seed_checkbox_component,
|
231 |
strength_slider_component,
|
@@ -236,5 +343,245 @@ with gr.Blocks() as demo:
|
|
236 |
output_mask_component
|
237 |
]
|
238 |
)
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
|
3 |
+
import cv2
|
4 |
import random
|
5 |
+
from typing import Tuple, Optional
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import requests
|
10 |
import spaces
|
11 |
import torch
|
12 |
+
from PIL import Image, ImageFilter
|
13 |
from diffusers import FluxInpaintPipeline
|
14 |
+
from gradio_client import Client, handle_file
|
|
|
15 |
|
16 |
MARKDOWN = """
|
17 |
# FLUX Inpainting
|
18 |
+
Model used is FLUX.1-schnell.
|
19 |
"""
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
+
IMAGE_SIZE = 1024
|
23 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
PIPE = FluxInpaintPipeline.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
26 |
+
CLIENT = Client("SkalskiP/florence-sam-masking")
|
27 |
+
|
28 |
+
|
29 |
+
EXAMPLES = [
|
30 |
+
[
|
31 |
+
{
|
32 |
+
"background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
33 |
+
"layers": [Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2-removebg.png", stream=True).raw)],
|
34 |
+
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
35 |
+
},
|
36 |
+
"little lion",
|
37 |
+
"",
|
38 |
+
5,
|
39 |
+
5,
|
40 |
+
42,
|
41 |
+
False,
|
42 |
+
0.85,
|
43 |
+
20
|
44 |
+
],
|
45 |
+
[
|
46 |
+
{
|
47 |
+
"background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-5.jpeg", stream=True).raw),
|
48 |
+
"layers": None,
|
49 |
+
"composite": None
|
50 |
+
},
|
51 |
+
"big blue eyes",
|
52 |
+
"eyes",
|
53 |
+
10,
|
54 |
+
5,
|
55 |
+
42,
|
56 |
+
False,
|
57 |
+
0.9,
|
58 |
+
20
|
59 |
+
]
|
60 |
+
]
|
61 |
+
|
62 |
+
|
63 |
+
def calculate_image_dimensions_for_flux(
|
64 |
original_resolution_wh: Tuple[int, int],
|
65 |
maximum_dimension: int = IMAGE_SIZE
|
66 |
) -> Tuple[int, int]:
|
67 |
width, height = original_resolution_wh
|
68 |
|
|
|
|
|
|
|
|
|
|
|
69 |
if width > height:
|
70 |
scaling_factor = maximum_dimension / width
|
71 |
else:
|
|
|
80 |
return new_width, new_height
|
81 |
|
82 |
|
83 |
+
def is_mask_empty(image: Image.Image) -> bool:
|
84 |
+
gray_img = image.convert("L")
|
85 |
+
pixels = list(gray_img.getdata())
|
86 |
+
return all(pixel == 0 for pixel in pixels)
|
87 |
+
|
88 |
+
|
89 |
+
def process_mask(
|
90 |
+
mask: Image.Image,
|
91 |
+
mask_inflation: Optional[int] = None,
|
92 |
+
mask_blur: Optional[int] = None
|
93 |
+
) -> Image.Image:
|
94 |
+
"""
|
95 |
+
Inflates and blurs the white regions of a mask.
|
96 |
+
Args:
|
97 |
+
mask (Image.Image): The input mask image.
|
98 |
+
mask_inflation (Optional[int]): The number of pixels to inflate the mask by.
|
99 |
+
mask_blur (Optional[int]): The radius of the Gaussian blur to apply.
|
100 |
+
Returns:
|
101 |
+
Image.Image: The processed mask with inflated and/or blurred regions.
|
102 |
+
"""
|
103 |
+
if mask_inflation and mask_inflation > 0:
|
104 |
+
mask_array = np.array(mask)
|
105 |
+
kernel = np.ones((mask_inflation, mask_inflation), np.uint8)
|
106 |
+
mask_array = cv2.dilate(mask_array, kernel, iterations=1)
|
107 |
+
mask = Image.fromarray(mask_array)
|
108 |
+
|
109 |
+
if mask_blur and mask_blur > 0:
|
110 |
+
mask = mask.filter(ImageFilter.GaussianBlur(radius=mask_blur))
|
111 |
+
|
112 |
+
return mask
|
113 |
+
|
114 |
+
|
115 |
+
def set_client_for_session(request: gr.Request):
|
116 |
+
try:
|
117 |
+
x_ip_token = request.headers['x-ip-token']
|
118 |
+
return Client("SkalskiP/florence-sam-masking", headers={"X-IP-Token": x_ip_token})
|
119 |
+
except:
|
120 |
+
return CLIENT
|
121 |
+
|
122 |
+
|
123 |
+
@spaces.GPU(duration=50)
|
124 |
+
def run_flux(
|
125 |
+
image: Image.Image,
|
126 |
+
mask: Image.Image,
|
127 |
+
prompt: str,
|
128 |
+
seed_slicer: int,
|
129 |
+
randomize_seed_checkbox: bool,
|
130 |
+
strength_slider: float,
|
131 |
+
num_inference_steps_slider: int,
|
132 |
+
resolution_wh: Tuple[int, int],
|
133 |
+
) -> Image.Image:
|
134 |
+
print("Running FLUX...")
|
135 |
+
width, height = resolution_wh
|
136 |
+
if randomize_seed_checkbox:
|
137 |
+
seed_slicer = random.randint(0, MAX_SEED)
|
138 |
+
generator = torch.Generator().manual_seed(seed_slicer)
|
139 |
+
return PIPE(
|
140 |
+
prompt=prompt,
|
141 |
+
image=image,
|
142 |
+
mask_image=mask,
|
143 |
+
width=width,
|
144 |
+
height=height,
|
145 |
+
strength=strength_slider,
|
146 |
+
generator=generator,
|
147 |
+
num_inference_steps=num_inference_steps_slider
|
148 |
+
).images[0]
|
149 |
+
|
150 |
+
|
151 |
def process(
|
152 |
+
client,
|
153 |
input_image_editor: dict,
|
154 |
+
inpainting_prompt_text: str,
|
155 |
+
masking_prompt_text: str,
|
156 |
+
mask_inflation_slider: int,
|
157 |
+
mask_blur_slider: int,
|
158 |
seed_slicer: int,
|
159 |
randomize_seed_checkbox: bool,
|
160 |
strength_slider: float,
|
161 |
+
num_inference_steps_slider: int
|
|
|
162 |
):
|
163 |
+
if not inpainting_prompt_text:
|
164 |
+
gr.Info("Please enter inpainting text prompt.")
|
165 |
return None, None
|
166 |
|
167 |
+
image_path = input_image_editor['background']
|
168 |
+
mask_path = input_image_editor['layers'][0]
|
169 |
+
|
170 |
+
image = Image.open(image_path)
|
171 |
+
mask = Image.open(mask_path)
|
172 |
|
173 |
if not image:
|
174 |
gr.Info("Please upload an image.")
|
175 |
return None, None
|
176 |
|
177 |
+
if is_mask_empty(mask) and not masking_prompt_text:
|
178 |
+
gr.Info("Please draw a mask or enter a masking prompt.")
|
179 |
return None, None
|
180 |
|
181 |
+
if not is_mask_empty(mask) and masking_prompt_text:
|
182 |
+
gr.Info("Both mask and masking prompt are provided. Please provide only one.")
|
183 |
+
return None, None
|
184 |
|
185 |
+
if is_mask_empty(mask):
|
186 |
+
print("Generating mask...")
|
187 |
+
mask = client.predict(
|
188 |
+
image_input=handle_file(image_path),
|
189 |
+
text_input=masking_prompt_text,
|
190 |
+
api_name="/process_image")
|
191 |
+
mask = Image.open(mask)
|
192 |
+
print("Mask generated.")
|
193 |
+
|
194 |
+
width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
|
195 |
+
image = image.resize((width, height), Image.LANCZOS)
|
196 |
+
mask = mask.resize((width, height), Image.LANCZOS)
|
197 |
+
mask = process_mask(mask, mask_inflation=mask_inflation_slider, mask_blur=mask_blur_slider)
|
198 |
+
image = run_flux(
|
199 |
+
image=image,
|
200 |
+
mask=mask,
|
201 |
+
prompt=inpainting_prompt_text,
|
202 |
+
seed_slicer=seed_slicer,
|
203 |
+
randomize_seed_checkbox=randomize_seed_checkbox,
|
204 |
+
strength_slider=strength_slider,
|
205 |
+
num_inference_steps_slider=num_inference_steps_slider,
|
206 |
+
resolution_wh=(width, height)
|
207 |
+
)
|
208 |
+
return image, mask
|
209 |
+
|
210 |
+
|
211 |
+
process_example = partial(process, client=CLIENT)
|
212 |
|
213 |
|
214 |
with gr.Blocks() as demo:
|
215 |
+
client_component = gr.State()
|
216 |
gr.Markdown(MARKDOWN)
|
217 |
with gr.Row():
|
218 |
with gr.Column():
|
219 |
input_image_editor_component = gr.ImageEditor(
|
220 |
label='Image',
|
221 |
+
type='filepath',
|
222 |
sources=["upload", "webcam"],
|
223 |
image_mode='RGB',
|
224 |
layers=False,
|
225 |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
226 |
|
227 |
with gr.Row():
|
228 |
+
inpainting_prompt_text_component = gr.Text(
|
229 |
+
label="Inpainting prompt",
|
230 |
show_label=False,
|
231 |
max_lines=1,
|
232 |
+
placeholder="Enter text to generate inpainting",
|
233 |
container=False,
|
234 |
)
|
235 |
submit_button_component = gr.Button(
|
236 |
value='Submit', variant='primary', scale=0)
|
237 |
|
238 |
with gr.Accordion("Advanced Settings", open=False):
|
239 |
+
masking_prompt_text_component = gr.Text(
|
240 |
+
label="Masking prompt",
|
241 |
+
show_label=False,
|
242 |
+
max_lines=1,
|
243 |
+
placeholder="Enter text to generate masking",
|
244 |
+
container=False,
|
245 |
+
)
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
mask_inflation_slider_component = gr.Slider(
|
249 |
+
label="Mask inflation",
|
250 |
+
info="Adjusts the amount of mask edge expansion before "
|
251 |
+
"inpainting.",
|
252 |
+
minimum=0,
|
253 |
+
maximum=20,
|
254 |
+
step=1,
|
255 |
+
value=5,
|
256 |
+
)
|
257 |
+
|
258 |
+
mask_blur_slider_component = gr.Slider(
|
259 |
+
label="Mask blur",
|
260 |
+
info="Controls the intensity of the Gaussian blur applied to "
|
261 |
+
"the mask edges.",
|
262 |
+
minimum=0,
|
263 |
+
maximum=20,
|
264 |
+
step=1,
|
265 |
+
value=5,
|
266 |
+
)
|
267 |
+
|
268 |
seed_slicer_component = gr.Slider(
|
269 |
label="Seed",
|
270 |
minimum=0,
|
|
|
279 |
with gr.Row():
|
280 |
strength_slider_component = gr.Slider(
|
281 |
label="Strength",
|
282 |
+
info="Indicates extent to transform the reference `image`. "
|
283 |
+
"Must be between 0 and 1. `image` is used as a starting "
|
284 |
+
"point and more noise is added the higher the `strength`.",
|
285 |
minimum=0,
|
286 |
maximum=1,
|
287 |
step=0.01,
|
|
|
290 |
|
291 |
num_inference_steps_slider_component = gr.Slider(
|
292 |
label="Number of inference steps",
|
293 |
+
info="The number of denoising steps. More denoising steps "
|
294 |
+
"usually lead to a higher quality image at the",
|
295 |
minimum=1,
|
296 |
+
maximum=50,
|
297 |
step=1,
|
298 |
value=20,
|
299 |
)
|
|
|
303 |
with gr.Accordion("Debug", open=False):
|
304 |
output_mask_component = gr.Image(
|
305 |
type='pil', image_mode='RGB', label='Input mask', format="png")
|
306 |
+
gr.Examples(
|
307 |
+
fn=process_example,
|
308 |
+
examples=EXAMPLES,
|
309 |
+
inputs=[
|
310 |
+
input_image_editor_component,
|
311 |
+
inpainting_prompt_text_component,
|
312 |
+
masking_prompt_text_component,
|
313 |
+
mask_inflation_slider_component,
|
314 |
+
mask_blur_slider_component,
|
315 |
+
seed_slicer_component,
|
316 |
+
randomize_seed_checkbox_component,
|
317 |
+
strength_slider_component,
|
318 |
+
num_inference_steps_slider_component
|
319 |
+
],
|
320 |
+
outputs=[
|
321 |
+
output_image_component,
|
322 |
+
output_mask_component
|
323 |
+
],
|
324 |
+
run_on_click=False
|
325 |
+
)
|
326 |
|
327 |
submit_button_component.click(
|
328 |
fn=process,
|
329 |
inputs=[
|
330 |
+
client_component,
|
331 |
input_image_editor_component,
|
332 |
+
inpainting_prompt_text_component,
|
333 |
+
masking_prompt_text_component,
|
334 |
+
mask_inflation_slider_component,
|
335 |
+
mask_blur_slider_component,
|
336 |
seed_slicer_component,
|
337 |
randomize_seed_checkbox_component,
|
338 |
strength_slider_component,
|
|
|
343 |
output_mask_component
|
344 |
]
|
345 |
)
|
346 |
+
demo.load(set_client_for_session, None, client_component)
|
347 |
+
|
348 |
+
demo.launch(debug=False, show_error=True)
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
# from typing import Tuple
|
353 |
+
|
354 |
+
# import requests
|
355 |
+
# import random
|
356 |
+
# import numpy as np
|
357 |
+
# import gradio as gr
|
358 |
+
# import spaces
|
359 |
+
# import torch
|
360 |
+
# from PIL import Image
|
361 |
+
# from diffusers import FluxInpaintPipeline
|
362 |
+
|
363 |
+
# torch.cuda.empty_cache()
|
364 |
+
|
365 |
+
|
366 |
+
# MAX_SEED = np.iinfo(np.int32).max
|
367 |
+
# IMAGE_SIZE = 512
|
368 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
369 |
+
|
370 |
+
|
371 |
+
# def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
372 |
+
# image = image.convert("RGBA")
|
373 |
+
# data = image.getdata()
|
374 |
+
# new_data = []
|
375 |
+
# for item in data:
|
376 |
+
# avg = sum(item[:3]) / 3
|
377 |
+
# if avg < threshold:
|
378 |
+
# new_data.append((0, 0, 0, 0))
|
379 |
+
# else:
|
380 |
+
# new_data.append(item)
|
381 |
+
|
382 |
+
# image.putdata(new_data)
|
383 |
+
# return image
|
384 |
+
|
385 |
+
|
386 |
+
# # EXAMPLES = [
|
387 |
+
# # [
|
388 |
+
# # {
|
389 |
+
# # "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
390 |
+
# # "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))],
|
391 |
+
# # "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
|
392 |
+
# # },
|
393 |
+
# # "little lion",
|
394 |
+
# # 42,
|
395 |
+
# # False,
|
396 |
+
# # 0.85,
|
397 |
+
# # 30
|
398 |
+
# # ],
|
399 |
+
# # [
|
400 |
+
# # {
|
401 |
+
# # "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
|
402 |
+
# # "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))],
|
403 |
+
# # "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
|
404 |
+
# # },
|
405 |
+
# # "tribal tattoos",
|
406 |
+
# # 42,
|
407 |
+
# # False,
|
408 |
+
# # 0.85,
|
409 |
+
# # 30
|
410 |
+
# # ]
|
411 |
+
# # ]
|
412 |
+
|
413 |
+
# pipe = FluxInpaintPipeline.from_pretrained(
|
414 |
+
# "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
415 |
+
|
416 |
+
|
417 |
+
# def resize_image_dimensions(
|
418 |
+
# original_resolution_wh: Tuple[int, int],
|
419 |
+
# maximum_dimension: int = IMAGE_SIZE
|
420 |
+
# ) -> Tuple[int, int]:
|
421 |
+
# width, height = original_resolution_wh
|
422 |
+
|
423 |
+
# # if width <= maximum_dimension and height <= maximum_dimension:
|
424 |
+
# # width = width - (width % 32)
|
425 |
+
# # height = height - (height % 32)
|
426 |
+
# # return width, height
|
427 |
+
|
428 |
+
# if width > height:
|
429 |
+
# scaling_factor = maximum_dimension / width
|
430 |
+
# else:
|
431 |
+
# scaling_factor = maximum_dimension / height
|
432 |
+
|
433 |
+
# new_width = int(width * scaling_factor)
|
434 |
+
# new_height = int(height * scaling_factor)
|
435 |
+
|
436 |
+
# new_width = new_width - (new_width % 32)
|
437 |
+
# new_height = new_height - (new_height % 32)
|
438 |
+
|
439 |
+
# return new_width, new_height
|
440 |
+
|
441 |
+
|
442 |
+
# @spaces.GPU(duration=100)
|
443 |
+
# def process(
|
444 |
+
# input_image_editor: dict,
|
445 |
+
# input_text: str,
|
446 |
+
# seed_slicer: int,
|
447 |
+
# randomize_seed_checkbox: bool,
|
448 |
+
# strength_slider: float,
|
449 |
+
# num_inference_steps_slider: int,
|
450 |
+
# progress=gr.Progress(track_tqdm=True)
|
451 |
+
# ):
|
452 |
+
# if not input_text:
|
453 |
+
# gr.Info("Please enter a text prompt.")
|
454 |
+
# return None, None
|
455 |
+
|
456 |
+
# image = input_image_editor['background']
|
457 |
+
# mask = input_image_editor['layers'][0]
|
458 |
+
|
459 |
+
# if not image:
|
460 |
+
# gr.Info("Please upload an image.")
|
461 |
+
# return None, None
|
462 |
+
|
463 |
+
# if not mask:
|
464 |
+
# gr.Info("Please draw a mask on the image.")
|
465 |
+
# return None, None
|
466 |
+
|
467 |
+
# width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
468 |
+
# resized_image = image.resize((width, height), Image.LANCZOS)
|
469 |
+
# resized_mask = mask.resize((width, height), Image.LANCZOS)
|
470 |
+
|
471 |
+
# if randomize_seed_checkbox:
|
472 |
+
# seed_slicer = random.randint(0, MAX_SEED)
|
473 |
+
# generator = torch.Generator().manual_seed(seed_slicer)
|
474 |
+
# with torch.no_grad(), torch.autocast("cuda"):
|
475 |
+
# result = pipe(
|
476 |
+
# prompt=input_text,
|
477 |
+
# image=resized_image,
|
478 |
+
# mask_image=resized_mask,
|
479 |
+
# width=width,
|
480 |
+
# height=height,
|
481 |
+
# strength=strength_slider,
|
482 |
+
# generator=generator,
|
483 |
+
# num_inference_steps=num_inference_steps_slider
|
484 |
+
# ).images[0]
|
485 |
+
# torch.cuda.empty_cache()
|
486 |
+
# return result, resized_mask
|
487 |
+
|
488 |
+
|
489 |
+
# with gr.Blocks() as demo:
|
490 |
+
# gr.Markdown(MARKDOWN)
|
491 |
+
# with gr.Row():
|
492 |
+
# with gr.Column():
|
493 |
+
# input_image_editor_component = gr.ImageEditor(
|
494 |
+
# label='Image',
|
495 |
+
# type='pil',
|
496 |
+
# sources=["upload", "webcam"],
|
497 |
+
# image_mode='RGB',
|
498 |
+
# layers=False,
|
499 |
+
# brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
500 |
+
|
501 |
+
# with gr.Row():
|
502 |
+
# input_text_component = gr.Text(
|
503 |
+
# label="Prompt",
|
504 |
+
# show_label=False,
|
505 |
+
# max_lines=1,
|
506 |
+
# placeholder="Enter your prompt",
|
507 |
+
# container=False,
|
508 |
+
# )
|
509 |
+
# submit_button_component = gr.Button(
|
510 |
+
# value='Submit', variant='primary', scale=0)
|
511 |
+
|
512 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
513 |
+
# seed_slicer_component = gr.Slider(
|
514 |
+
# label="Seed",
|
515 |
+
# minimum=0,
|
516 |
+
# maximum=MAX_SEED,
|
517 |
+
# step=1,
|
518 |
+
# value=42,
|
519 |
+
# )
|
520 |
+
|
521 |
+
# randomize_seed_checkbox_component = gr.Checkbox(
|
522 |
+
# label="Randomize seed", value=True)
|
523 |
+
|
524 |
+
# with gr.Row():
|
525 |
+
# strength_slider_component = gr.Slider(
|
526 |
+
# label="Strength",
|
527 |
+
# # info="Indicates extent to transform the reference `image`. "
|
528 |
+
# # "Must be between 0 and 1. `image` is used as a starting "
|
529 |
+
# # "point and more noise is added the higher the `strength`.",
|
530 |
+
# minimum=0,
|
531 |
+
# maximum=1,
|
532 |
+
# step=0.01,
|
533 |
+
# value=0.85,
|
534 |
+
# )
|
535 |
+
|
536 |
+
# num_inference_steps_slider_component = gr.Slider(
|
537 |
+
# label="Number of inference steps",
|
538 |
+
# # info="The number of denoising steps. More denoising steps "
|
539 |
+
# # "usually lead to a higher quality image at the",
|
540 |
+
# minimum=1,
|
541 |
+
# maximum=20,
|
542 |
+
# step=1,
|
543 |
+
# value=20,
|
544 |
+
# )
|
545 |
+
# with gr.Column():
|
546 |
+
# output_image_component = gr.Image(
|
547 |
+
# type='pil', image_mode='RGB', label='Generated image', format="png")
|
548 |
+
# with gr.Accordion("Debug", open=False):
|
549 |
+
# output_mask_component = gr.Image(
|
550 |
+
# type='pil', image_mode='RGB', label='Input mask', format="png")
|
551 |
+
# # with gr.Row():
|
552 |
+
# # gr.Examples(
|
553 |
+
# # fn=process,
|
554 |
+
# # examples=EXAMPLES,
|
555 |
+
# # inputs=[
|
556 |
+
# # input_image_editor_component,
|
557 |
+
# # input_text_component,
|
558 |
+
# # seed_slicer_component,
|
559 |
+
# # randomize_seed_checkbox_component,
|
560 |
+
# # strength_slider_component,
|
561 |
+
# # num_inference_steps_slider_component
|
562 |
+
# # ],
|
563 |
+
# # outputs=[
|
564 |
+
# # output_image_component,
|
565 |
+
# # output_mask_component
|
566 |
+
# # ],
|
567 |
+
# # run_on_click=True,
|
568 |
+
# # cache_examples=True
|
569 |
+
# # )
|
570 |
+
|
571 |
+
# submit_button_component.click(
|
572 |
+
# fn=process,
|
573 |
+
# inputs=[
|
574 |
+
# input_image_editor_component,
|
575 |
+
# input_text_component,
|
576 |
+
# seed_slicer_component,
|
577 |
+
# randomize_seed_checkbox_component,
|
578 |
+
# strength_slider_component,
|
579 |
+
# num_inference_steps_slider_component
|
580 |
+
# ],
|
581 |
+
# outputs=[
|
582 |
+
# output_image_component,
|
583 |
+
# output_mask_component
|
584 |
+
# ]
|
585 |
+
# )
|
586 |
+
|
587 |
+
# demo.launch(share=True)
|