explain
Browse files- app.py +10 -3
- data.pkl → ts/data.pkl +0 -0
app.py
CHANGED
|
@@ -44,7 +44,7 @@ def trend(t):
|
|
| 44 |
df=pd.DataFrame(result,columns=ma.columns)
|
| 45 |
d=df.tail(1).stack(level=-1).droplevel(0, axis=0)
|
| 46 |
'''
|
| 47 |
-
d=pd.read_pickle("data.pkl")
|
| 48 |
'''
|
| 49 |
https://www.gradio.app/docs/plot
|
| 50 |
fig = px.line(df, x="day", y=countries)
|
|
@@ -230,6 +230,12 @@ This analysis is derived from an XGBoost regression model designed to predict ho
|
|
| 230 |
|
| 231 |
Full dataset at the bottom of this tab
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
Explain by Dataset
|
| 234 |
===============
|
| 235 |

|
|
@@ -239,7 +245,7 @@ Explain by Dataset
|
|
| 239 |
- **dist_store** demonstrates minimal impact on price.
|
| 240 |
- Higher age correlates with lower prices while lower age raises prices.
|
| 241 |
|
| 242 |
-
|
| 243 |
|
| 244 |
Explain by Feature
|
| 245 |
===============
|
|
@@ -305,6 +311,7 @@ ML Observability
|
|
| 305 |
|
| 306 |
**A/B Testing for Lift:**
|
| 307 |
- Utilized statistical approaches in A/B testing for small business models, ensuring lift met criteria.
|
|
|
|
| 308 |
|
| 309 |
**File/Log Mining:**
|
| 310 |
- Led server observability, leveraging event journey maps to understand server downtimes.
|
|
@@ -449,5 +456,5 @@ Assumptions:
|
|
| 449 |
|
| 450 |
""")
|
| 451 |
|
| 452 |
-
demo.launch(allowed_paths=["./xgb"])
|
| 453 |
|
|
|
|
| 44 |
df=pd.DataFrame(result,columns=ma.columns)
|
| 45 |
d=df.tail(1).stack(level=-1).droplevel(0, axis=0)
|
| 46 |
'''
|
| 47 |
+
d=pd.read_pickle("./ts/data.pkl")
|
| 48 |
'''
|
| 49 |
https://www.gradio.app/docs/plot
|
| 50 |
fig = px.line(df, x="day", y=countries)
|
|
|
|
| 230 |
|
| 231 |
Full dataset at the bottom of this tab
|
| 232 |
|
| 233 |
+
Explain by Context
|
| 234 |
+
===============
|
| 235 |
+
Below are explaination in typical background E[f(x)]
|
| 236 |
+
|
| 237 |
+
Sometime it is useful to switch to credit healthy background, to explain why a certain person default by changing the baseline E[f(x) | credit healthy] with interventional feature perturbation
|
| 238 |
+
|
| 239 |
Explain by Dataset
|
| 240 |
===============
|
| 241 |

|
|
|
|
| 245 |
- **dist_store** demonstrates minimal impact on price.
|
| 246 |
- Higher age correlates with lower prices while lower age raises prices.
|
| 247 |
|
| 248 |
+
|
| 249 |
|
| 250 |
Explain by Feature
|
| 251 |
===============
|
|
|
|
| 311 |
|
| 312 |
**A/B Testing for Lift:**
|
| 313 |
- Utilized statistical approaches in A/B testing for small business models, ensuring lift met criteria.
|
| 314 |
+
- Setting up baseline model, retain evidence of input, output
|
| 315 |
|
| 316 |
**File/Log Mining:**
|
| 317 |
- Led server observability, leveraging event journey maps to understand server downtimes.
|
|
|
|
| 456 |
|
| 457 |
""")
|
| 458 |
|
| 459 |
+
demo.launch(allowed_paths=["./xgb","./ts"])
|
| 460 |
|
data.pkl → ts/data.pkl
RENAMED
|
File without changes
|