Spaces:
Runtime error
Runtime error
File size: 9,708 Bytes
7056d79 08f2e08 470fc50 08f2e08 470fc50 08f2e08 470fc50 08f2e08 7056d79 8b81596 7056d79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import torch
import gradio as gr
from openvoice import se_extractor
from openvoice.api import ToneColorConverter
from elevenlabs import voices, generate, set_api_key, UnauthenticatedRateLimitError
ckpt_converter = 'checkpoints_v2/converter'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
base_speaker = f"11labs.mp3"
source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)
def generate_voice(text, voice_name):
try:
audio = generate(
text[:1000], # Limit to 1000 characters
voice=voice_name,
model="eleven_multilingual_v2"
)
with open("output" + ".mp3", mode='wb') as f:
f.write(audio)
return "output.mp3"
except UnauthenticatedRateLimitError as e:
raise Exception("Thanks for trying out ElevenLabs TTS! You've reached the free tier limit. Please provide an API key to continue.")
except Exception as e:
raise Exception(e)
def convert(api_key, text, tgt, voice, save_path):
os.environ["ELEVEN_API_KEY"] = api_key
src_path = generate_voice(text, voice)
reference_speaker = tgt
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=True)
encode_message = "@MyShell"
tone_color_converter.convert(
audio_src_path=src_path,
src_se=source_se,
tgt_se=target_se,
output_path=f"output/{save_path}.wav",
message=encode_message)
return f"output/{save_path}.wav"
class subtitle:
def __init__(self,index:int, start_time, end_time, text:str):
self.index = int(index)
self.start_time = start_time
self.end_time = end_time
self.text = text.strip()
def normalize(self,ntype:str,fps=30):
if ntype=="prcsv":
h,m,s,fs=(self.start_time.replace(';',':')).split(":")#seconds
self.start_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,2)
h,m,s,fs=(self.end_time.replace(';',':')).split(":")
self.end_time=int(h)*3600+int(m)*60+int(s)+round(int(fs)/fps,2)
elif ntype=="srt":
h,m,s=self.start_time.split(":")
s=s.replace(",",".")
self.start_time=int(h)*3600+int(m)*60+round(float(s),2)
h,m,s=self.end_time.split(":")
s=s.replace(",",".")
self.end_time=int(h)*3600+int(m)*60+round(float(s),2)
else:
raise ValueError
def add_offset(self,offset=0):
self.start_time+=offset
if self.start_time<0:
self.start_time=0
self.end_time+=offset
if self.end_time<0:
self.end_time=0
def __str__(self) -> str:
return f'id:{self.index},start:{self.start_time},end:{self.end_time},text:{self.text}'
def read_srt(uploaded_file):
offset=0
with open(uploaded_file.name,"r",encoding="utf-8") as f:
file=f.readlines()
subtitle_list=[]
indexlist=[]
filelength=len(file)
for i in range(0,filelength):
if " --> " in file[i]:
is_st=True
for char in file[i-1].strip().replace("\ufeff",""):
if char not in ['0','1','2','3','4','5','6','7','8','9']:
is_st=False
break
if is_st:
indexlist.append(i) #get line id
listlength=len(indexlist)
for i in range(0,listlength-1):
st,et=file[indexlist[i]].split(" --> ")
id=int(file[indexlist[i]-1].strip().replace("\ufeff",""))
text=""
for x in range(indexlist[i]+1,indexlist[i+1]-2):
text+=file[x]
st=subtitle(id,st,et,text)
st.normalize(ntype="srt")
st.add_offset(offset=offset)
subtitle_list.append(st)
st,et=file[indexlist[-1]].split(" --> ")
id=file[indexlist[-1]-1]
text=""
for x in range(indexlist[-1]+1,filelength):
text+=file[x]
st=subtitle(id,st,et,text)
st.normalize(ntype="srt")
st.add_offset(offset=offset)
subtitle_list.append(st)
return subtitle_list
from pydub import AudioSegment
def trim_audio(intervals, input_file_path, output_file_path):
# load the audio file
audio = AudioSegment.from_file(input_file_path)
# iterate over the list of time intervals
for i, (start_time, end_time) in enumerate(intervals):
# extract the segment of the audio
segment = audio[start_time*1000:end_time*1000]
output_file_path_i = f"{output_file_path}_{i}.wav"
if len(segment) < 5000:
# Calculate how many times to repeat the audio to make it at least 5 seconds long
repeat_count = (5000 // len(segment)) + 2
# Repeat the audio
longer_audio = segment * repeat_count
# Save the extended audio
print(f"Audio was less than 5 seconds. Extended to {len(longer_audio)} milliseconds.")
longer_audio.export(output_file_path_i, format='wav')
else:
print("Audio is already 5 seconds or longer.")
segment.export(output_file_path_i, format='wav')
import re
def sort_key(file_name):
"""Extract the last number in the file name for sorting."""
numbers = re.findall(r'\d+', file_name)
if numbers:
return int(numbers[-1])
return -1 # In case there's no number, this ensures it goes to the start.
def merge_audios(folder_path):
output_file = "AI配音版.wav"
# Get all WAV files in the folder
files = [f for f in os.listdir(folder_path) if f.endswith('.wav')]
# Sort files based on the last digit in their names
sorted_files = sorted(files, key=sort_key)
# Initialize an empty audio segment
merged_audio = AudioSegment.empty()
# Loop through each file, in order, and concatenate them
for file in sorted_files:
audio = AudioSegment.from_wav(os.path.join(folder_path, file))
merged_audio += audio
print(f"Merged: {file}")
# Export the merged audio to a new file
merged_audio.export(output_file, format="wav")
return "AI配音版.wav"
import shutil
def convert_from_srt(apikey, filename, audio_full, voice, multilingual):
subtitle_list = read_srt(filename)
#audio_data, sr = librosa.load(audio_full, sr=44100)
#write("audio_full.wav", sr, audio_data.astype(np.int16))
if os.path.isdir("output"):
shutil.rmtree("output")
if multilingual==False:
for i in subtitle_list:
os.makedirs("output", exist_ok=True)
trim_audio([[i.start_time, i.end_time]], audio_full, f"sliced_audio_{i.index}")
print(f"正在合成第{i.index}条语音")
print(f"语音内容:{i.text}")
convert(apikey, i.text, f"sliced_audio_{i.index}_0.wav", voice, i.text + " " + str(i.index))
else:
for i in subtitle_list:
os.makedirs("output", exist_ok=True)
trim_audio([[i.start_time, i.end_time]], audio_full, f"sliced_audio_{i.index}")
print(f"正在合成第{i.index}条语音")
print(f"语音内容:{i.text.splitlines()[1]}")
convert(apikey, i.text.splitlines()[1], f"sliced_audio_{i.index}_0.wav", voice, i.text.splitlines()[1] + " " + str(i.index))
merge_audios("output")
return "AI配音版.wav"
restart_markdown = ("""
### 若此页面无法正常显示,请点击[此链接](https://openxlab.org.cn/apps/detail/Kevin676/OpenAI-TTS)唤醒该程序!谢谢🍻
""")
all_voices = voices()
with gr.Blocks() as app:
gr.Markdown("# <center>🌊💕🎶 11Labs + OpenVoice V2 - SRT文件一键AI配音</center>")
gr.Markdown("### <center>🌟 只需上传SRT文件和原版配音文件即可,每次一集视频AI自动配音!Developed by Kevin Wang </center>")
with gr.Row():
with gr.Column():
inp0 = gr.Textbox(type='password', label='请输入您的11Labs API Key')
inp1 = gr.File(file_count="single", label="请上传一集视频对应的SRT文件")
inp2 = gr.Audio(label="请上传一集视频的配音文件", type="filepath")
inp3 = gr.Dropdown(choices=[ voice.name for voice in all_voices ], visible=False, label='请选择一个说话人提供基础音色', info="试听音色链接:https://huggingface.co/spaces/elevenlabs/tts", value='Rachel')
#inp4 = gr.Dropdown(label="请选择用于分离伴奏的模型", info="UVR-HP5去除背景音乐效果更好,但会对人声造成一定的损伤", choices=["UVR-HP2", "UVR-HP5"], value="UVR-HP5")
inp4 = gr.Checkbox(label="SRT文件是否为双语字幕", info="若为双语字幕,请打勾选择(SRT文件中需要先出现中文字幕,后英文字幕;中英字幕各占一行)")
btn = gr.Button("一键开启AI配音吧💕", variant="primary")
with gr.Column():
out1 = gr.Audio(label="为您生成的AI完整配音", type="filepath")
btn.click(convert_from_srt, [inp0, inp1, inp2, inp3, inp4], [out1])
gr.Markdown("### <center>注意❗:请勿生成会对任何个人或组织造成侵害的内容,请尊重他人的著作权和知识产权。用户对此程序的任何使用行为与程序开发者无关。</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.launch(show_error=True) |