Spaces:
Runtime error
Runtime error
| from bark.generation import load_codec_model, generate_text_semantic, grab_best_device | |
| from bark import SAMPLE_RATE | |
| from encodec.utils import convert_audio | |
| from bark.hubert.hubert_manager import HuBERTManager | |
| from bark.hubert.pre_kmeans_hubert import CustomHubert | |
| from bark.hubert.customtokenizer import CustomTokenizer | |
| from bark.api import semantic_to_waveform | |
| from scipy.io.wavfile import write as write_wav | |
| from util.helper import create_filename | |
| from util.settings import Settings | |
| import torchaudio | |
| import torch | |
| import os | |
| import gradio | |
| def swap_voice_from_audio(swap_audio_filename, selected_speaker, tokenizer_lang, seed, batchcount, progress=gradio.Progress(track_tqdm=True)): | |
| use_gpu = not os.environ.get("BARK_FORCE_CPU", False) | |
| progress(0, desc="Loading Codec") | |
| # From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
| hubert_manager = HuBERTManager() | |
| hubert_manager.make_sure_hubert_installed() | |
| hubert_manager.make_sure_tokenizer_installed(tokenizer_lang=tokenizer_lang) | |
| # From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
| # Load HuBERT for semantic tokens | |
| # Load the HuBERT model | |
| device = grab_best_device(use_gpu) | |
| hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device) | |
| model = load_codec_model(use_gpu=use_gpu) | |
| # Load the CustomTokenizer model | |
| tokenizer = CustomTokenizer.load_from_checkpoint(f'./models/hubert/{tokenizer_lang}_tokenizer.pth').to(device) # Automatically uses the right layers | |
| progress(0.25, desc="Converting WAV") | |
| # Load and pre-process the audio waveform | |
| wav, sr = torchaudio.load(swap_audio_filename) | |
| if wav.shape[0] == 2: # Stereo to mono if needed | |
| wav = wav.mean(0, keepdim=True) | |
| wav = convert_audio(wav, sr, model.sample_rate, model.channels) | |
| wav = wav.to(device) | |
| semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate) | |
| semantic_tokens = tokenizer.get_token(semantic_vectors) | |
| audio = semantic_to_waveform( | |
| semantic_tokens, | |
| history_prompt=selected_speaker, | |
| temp=0.7, | |
| silent=False, | |
| output_full=False) | |
| settings = Settings('config.yaml') | |
| result = create_filename(settings.output_folder_path, None, "swapvoice",".wav") | |
| write_wav(result, SAMPLE_RATE, audio) | |
| return result | |