kevinwang676 commited on
Commit
e6ca914
·
verified ·
1 Parent(s): 63b7e9e

Update usr/diff/shallow_diffusion_tts.py

Browse files
Files changed (1) hide show
  1. usr/diff/shallow_diffusion_tts.py +326 -324
usr/diff/shallow_diffusion_tts.py CHANGED
@@ -1,324 +1,326 @@
1
- import math
2
- import random
3
- from collections import deque
4
- from functools import partial
5
- from inspect import isfunction
6
- from pathlib import Path
7
- import numpy as np
8
- import torch
9
- import torch.nn.functional as F
10
- from torch import nn
11
- from tqdm import tqdm
12
- from einops import rearrange
13
-
14
- from modules.fastspeech.fs2 import FastSpeech2
15
- from modules.diffsinger_midi.fs2 import FastSpeech2MIDI
16
- from utils.hparams import hparams
17
-
18
-
19
-
20
- def exists(x):
21
- return x is not None
22
-
23
-
24
- def default(val, d):
25
- if exists(val):
26
- return val
27
- return d() if isfunction(d) else d
28
-
29
-
30
- # gaussian diffusion trainer class
31
-
32
- def extract(a, t, x_shape):
33
- b, *_ = t.shape
34
- out = a.gather(-1, t)
35
- return out.reshape(b, *((1,) * (len(x_shape) - 1)))
36
-
37
-
38
- def noise_like(shape, device, repeat=False):
39
- repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
40
- noise = lambda: torch.randn(shape, device=device)
41
- return repeat_noise() if repeat else noise()
42
-
43
-
44
- def linear_beta_schedule(timesteps, max_beta=hparams.get('max_beta', 0.01)):
45
- """
46
- linear schedule
47
- """
48
- betas = np.linspace(1e-4, max_beta, timesteps)
49
- return betas
50
-
51
-
52
- def cosine_beta_schedule(timesteps, s=0.008):
53
- """
54
- cosine schedule
55
- as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
56
- """
57
- steps = timesteps + 1
58
- x = np.linspace(0, steps, steps)
59
- alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
60
- alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
61
- betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
62
- return np.clip(betas, a_min=0, a_max=0.999)
63
-
64
-
65
- beta_schedule = {
66
- "cosine": cosine_beta_schedule,
67
- "linear": linear_beta_schedule,
68
- }
69
-
70
-
71
- class GaussianDiffusion(nn.Module):
72
- def __init__(self, phone_encoder, out_dims, denoise_fn,
73
- timesteps=1000, K_step=1000, loss_type=hparams.get('diff_loss_type', 'l1'), betas=None, spec_min=None, spec_max=None):
74
- super().__init__()
75
- self.denoise_fn = denoise_fn
76
- if hparams.get('use_midi') is not None and hparams['use_midi']:
77
- self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims)
78
- else:
79
- self.fs2 = FastSpeech2(phone_encoder, out_dims)
80
- self.mel_bins = out_dims
81
-
82
- if exists(betas):
83
- betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
84
- else:
85
- if 'schedule_type' in hparams.keys():
86
- betas = beta_schedule[hparams['schedule_type']](timesteps)
87
- else:
88
- betas = cosine_beta_schedule(timesteps)
89
-
90
- alphas = 1. - betas
91
- alphas_cumprod = np.cumprod(alphas, axis=0)
92
- alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
93
-
94
- timesteps, = betas.shape
95
- self.num_timesteps = int(timesteps)
96
- self.K_step = K_step
97
- self.loss_type = loss_type
98
-
99
- self.noise_list = deque(maxlen=4)
100
-
101
- to_torch = partial(torch.tensor, dtype=torch.float32)
102
-
103
- self.register_buffer('betas', to_torch(betas))
104
- self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
105
- self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
106
-
107
- # calculations for diffusion q(x_t | x_{t-1}) and others
108
- self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
109
- self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
110
- self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
111
- self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
112
- self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
113
-
114
- # calculations for posterior q(x_{t-1} | x_t, x_0)
115
- posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
116
- # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
117
- self.register_buffer('posterior_variance', to_torch(posterior_variance))
118
- # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
119
- self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
120
- self.register_buffer('posterior_mean_coef1', to_torch(
121
- betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
122
- self.register_buffer('posterior_mean_coef2', to_torch(
123
- (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
124
-
125
- self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']])
126
- self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']])
127
-
128
- def q_mean_variance(self, x_start, t):
129
- mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
130
- variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
131
- log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
132
- return mean, variance, log_variance
133
-
134
- def predict_start_from_noise(self, x_t, t, noise):
135
- return (
136
- extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
137
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
138
- )
139
-
140
- def q_posterior(self, x_start, x_t, t):
141
- posterior_mean = (
142
- extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
143
- extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
144
- )
145
- posterior_variance = extract(self.posterior_variance, t, x_t.shape)
146
- posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
147
- return posterior_mean, posterior_variance, posterior_log_variance_clipped
148
-
149
- def p_mean_variance(self, x, t, cond, clip_denoised: bool):
150
- noise_pred = self.denoise_fn(x, t, cond=cond)
151
- x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
152
-
153
- if clip_denoised:
154
- x_recon.clamp_(-1., 1.)
155
-
156
- model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
157
- return model_mean, posterior_variance, posterior_log_variance
158
-
159
- @torch.no_grad()
160
- def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
161
- b, *_, device = *x.shape, x.device
162
- model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised)
163
- noise = noise_like(x.shape, device, repeat_noise)
164
- # no noise when t == 0
165
- nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
166
- return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
167
-
168
- @torch.no_grad()
169
- def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
170
- """
171
- Use the PLMS method from [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
172
- """
173
-
174
- def get_x_pred(x, noise_t, t):
175
- a_t = extract(self.alphas_cumprod, t, x.shape)
176
- if t[0] < interval:
177
- a_prev = torch.ones_like(a_t)
178
- else:
179
- a_prev = extract(self.alphas_cumprod, torch.max(t-interval, torch.zeros_like(t)), x.shape)
180
- a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
181
-
182
- x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
183
- x_pred = x + x_delta
184
-
185
- return x_pred
186
-
187
- noise_list = self.noise_list
188
- noise_pred = self.denoise_fn(x, t, cond=cond)
189
-
190
- if len(noise_list) == 0:
191
- x_pred = get_x_pred(x, noise_pred, t)
192
- noise_pred_prev = self.denoise_fn(x_pred, max(t-interval, 0), cond=cond)
193
- noise_pred_prime = (noise_pred + noise_pred_prev) / 2
194
- elif len(noise_list) == 1:
195
- noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
196
- elif len(noise_list) == 2:
197
- noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
198
- elif len(noise_list) >= 3:
199
- noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
200
-
201
- x_prev = get_x_pred(x, noise_pred_prime, t)
202
- noise_list.append(noise_pred)
203
-
204
- return x_prev
205
-
206
- def q_sample(self, x_start, t, noise=None):
207
- noise = default(noise, lambda: torch.randn_like(x_start))
208
- return (
209
- extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
210
- extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
211
- )
212
-
213
- def p_losses(self, x_start, t, cond, noise=None, nonpadding=None):
214
- noise = default(noise, lambda: torch.randn_like(x_start))
215
-
216
- x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
217
- x_recon = self.denoise_fn(x_noisy, t, cond)
218
-
219
- if self.loss_type == 'l1':
220
- if nonpadding is not None:
221
- loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean()
222
- else:
223
- # print('are you sure w/o nonpadding?')
224
- loss = (noise - x_recon).abs().mean()
225
-
226
- elif self.loss_type == 'l2':
227
- loss = F.mse_loss(noise, x_recon)
228
- else:
229
- raise NotImplementedError()
230
-
231
- return loss
232
-
233
- def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
234
- ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
235
- b, *_, device = *txt_tokens.shape, txt_tokens.device
236
- ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
237
- skip_decoder=(not infer), infer=infer, **kwargs)
238
- cond = ret['decoder_inp'].transpose(1, 2)
239
-
240
- if not infer:
241
- t = torch.randint(0, self.K_step, (b,), device=device).long()
242
- x = ref_mels
243
- x = self.norm_spec(x)
244
- x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
245
- ret['diff_loss'] = self.p_losses(x, t, cond)
246
- # nonpadding = (mel2ph != 0).float()
247
- # ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding)
248
- else:
249
- ret['fs2_mel'] = ret['mel_out']
250
- fs2_mels = ret['mel_out']
251
- t = self.K_step
252
- fs2_mels = self.norm_spec(fs2_mels)
253
- fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
254
-
255
- x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
256
- if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
257
- print('===> gaussion start.')
258
- shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
259
- x = torch.randn(shape, device=device)
260
-
261
- if hparams.get('pndm_speedup'):
262
- print('===> pndm speed:', hparams['pndm_speedup'])
263
- self.noise_list = deque(maxlen=4)
264
- iteration_interval = hparams['pndm_speedup']
265
- for i in tqdm(reversed(range(0, t, iteration_interval)), desc='sample time step',
266
- total=t // iteration_interval):
267
- x = self.p_sample_plms(x, torch.full((b,), i, device=device, dtype=torch.long), iteration_interval,
268
- cond)
269
- else:
270
- for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
271
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
272
- x = x[:, 0].transpose(1, 2)
273
- if mel2ph is not None: # for singing
274
- ret['mel_out'] = self.denorm_spec(x) * ((mel2ph > 0).float()[:, :, None])
275
- else:
276
- ret['mel_out'] = self.denorm_spec(x)
277
- return ret
278
-
279
- def norm_spec(self, x):
280
- return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
281
-
282
- def denorm_spec(self, x):
283
- return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
284
-
285
- def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph):
286
- return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph)
287
-
288
- def out2mel(self, x):
289
- return x
290
-
291
-
292
- class OfflineGaussianDiffusion(GaussianDiffusion):
293
- def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
294
- ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
295
- b, *_, device = *txt_tokens.shape, txt_tokens.device
296
-
297
- ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
298
- skip_decoder=True, infer=True, **kwargs)
299
- cond = ret['decoder_inp'].transpose(1, 2)
300
- fs2_mels = ref_mels[1]
301
- ref_mels = ref_mels[0]
302
-
303
- if not infer:
304
- t = torch.randint(0, self.K_step, (b,), device=device).long()
305
- x = ref_mels
306
- x = self.norm_spec(x)
307
- x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
308
- ret['diff_loss'] = self.p_losses(x, t, cond)
309
- else:
310
- t = self.K_step
311
- fs2_mels = self.norm_spec(fs2_mels)
312
- fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
313
-
314
- x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
315
-
316
- if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
317
- print('===> gaussion start.')
318
- shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
319
- x = torch.randn(shape, device=device)
320
- for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
321
- x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
322
- x = x[:, 0].transpose(1, 2)
323
- ret['mel_out'] = self.denorm_spec(x)
324
- return ret
 
 
 
1
+ import math
2
+ import random
3
+ from collections import deque
4
+ from functools import partial
5
+ from inspect import isfunction
6
+ from pathlib import Path
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from torch import nn
11
+ from tqdm import tqdm
12
+ from einops import rearrange
13
+
14
+ from modules.fastspeech.fs2 import FastSpeech2
15
+ from modules.diffsinger_midi.fs2 import FastSpeech2MIDI
16
+ from utils.hparams import hparams
17
+
18
+ import spaces
19
+
20
+ def exists(x):
21
+ return x is not None
22
+
23
+
24
+ def default(val, d):
25
+ if exists(val):
26
+ return val
27
+ return d() if isfunction(d) else d
28
+
29
+
30
+ # gaussian diffusion trainer class
31
+
32
+ def extract(a, t, x_shape):
33
+ b, *_ = t.shape
34
+ out = a.gather(-1, t)
35
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
36
+
37
+
38
+ def noise_like(shape, device, repeat=False):
39
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
40
+ noise = lambda: torch.randn(shape, device=device)
41
+ return repeat_noise() if repeat else noise()
42
+
43
+
44
+ def linear_beta_schedule(timesteps, max_beta=hparams.get('max_beta', 0.01)):
45
+ """
46
+ linear schedule
47
+ """
48
+ betas = np.linspace(1e-4, max_beta, timesteps)
49
+ return betas
50
+
51
+
52
+ def cosine_beta_schedule(timesteps, s=0.008):
53
+ """
54
+ cosine schedule
55
+ as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
56
+ """
57
+ steps = timesteps + 1
58
+ x = np.linspace(0, steps, steps)
59
+ alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
60
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
61
+ betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
62
+ return np.clip(betas, a_min=0, a_max=0.999)
63
+
64
+
65
+ beta_schedule = {
66
+ "cosine": cosine_beta_schedule,
67
+ "linear": linear_beta_schedule,
68
+ }
69
+
70
+
71
+ class GaussianDiffusion(nn.Module):
72
+ def __init__(self, phone_encoder, out_dims, denoise_fn,
73
+ timesteps=1000, K_step=1000, loss_type=hparams.get('diff_loss_type', 'l1'), betas=None, spec_min=None, spec_max=None):
74
+ super().__init__()
75
+ self.denoise_fn = denoise_fn
76
+ if hparams.get('use_midi') is not None and hparams['use_midi']:
77
+ self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims)
78
+ else:
79
+ self.fs2 = FastSpeech2(phone_encoder, out_dims)
80
+ self.mel_bins = out_dims
81
+
82
+ if exists(betas):
83
+ betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
84
+ else:
85
+ if 'schedule_type' in hparams.keys():
86
+ betas = beta_schedule[hparams['schedule_type']](timesteps)
87
+ else:
88
+ betas = cosine_beta_schedule(timesteps)
89
+
90
+ alphas = 1. - betas
91
+ alphas_cumprod = np.cumprod(alphas, axis=0)
92
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
93
+
94
+ timesteps, = betas.shape
95
+ self.num_timesteps = int(timesteps)
96
+ self.K_step = K_step
97
+ self.loss_type = loss_type
98
+
99
+ self.noise_list = deque(maxlen=4)
100
+
101
+ to_torch = partial(torch.tensor, dtype=torch.float32)
102
+
103
+ self.register_buffer('betas', to_torch(betas))
104
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
105
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
106
+
107
+ # calculations for diffusion q(x_t | x_{t-1}) and others
108
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
109
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
110
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
111
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
112
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
113
+
114
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
115
+ posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
116
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
117
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
118
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
119
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
120
+ self.register_buffer('posterior_mean_coef1', to_torch(
121
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
122
+ self.register_buffer('posterior_mean_coef2', to_torch(
123
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
124
+
125
+ self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']])
126
+ self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']])
127
+
128
+ def q_mean_variance(self, x_start, t):
129
+ mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
130
+ variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
131
+ log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
132
+ return mean, variance, log_variance
133
+
134
+ def predict_start_from_noise(self, x_t, t, noise):
135
+ return (
136
+ extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
137
+ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
138
+ )
139
+
140
+ def q_posterior(self, x_start, x_t, t):
141
+ posterior_mean = (
142
+ extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
143
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
144
+ )
145
+ posterior_variance = extract(self.posterior_variance, t, x_t.shape)
146
+ posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
147
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
148
+
149
+ def p_mean_variance(self, x, t, cond, clip_denoised: bool):
150
+ noise_pred = self.denoise_fn(x, t, cond=cond)
151
+ x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
152
+
153
+ if clip_denoised:
154
+ x_recon.clamp_(-1., 1.)
155
+
156
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
157
+ return model_mean, posterior_variance, posterior_log_variance
158
+
159
+ @torch.no_grad()
160
+ def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
161
+ b, *_, device = *x.shape, x.device
162
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised)
163
+ noise = noise_like(x.shape, device, repeat_noise)
164
+ # no noise when t == 0
165
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
166
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
167
+
168
+ @torch.no_grad()
169
+ def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
170
+ """
171
+ Use the PLMS method from [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
172
+ """
173
+
174
+ def get_x_pred(x, noise_t, t):
175
+ a_t = extract(self.alphas_cumprod, t, x.shape)
176
+ if t[0] < interval:
177
+ a_prev = torch.ones_like(a_t)
178
+ else:
179
+ a_prev = extract(self.alphas_cumprod, torch.max(t-interval, torch.zeros_like(t)), x.shape)
180
+ a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
181
+
182
+ x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
183
+ x_pred = x + x_delta
184
+
185
+ return x_pred
186
+
187
+ noise_list = self.noise_list
188
+ noise_pred = self.denoise_fn(x, t, cond=cond)
189
+
190
+ if len(noise_list) == 0:
191
+ x_pred = get_x_pred(x, noise_pred, t)
192
+ noise_pred_prev = self.denoise_fn(x_pred, max(t-interval, 0), cond=cond)
193
+ noise_pred_prime = (noise_pred + noise_pred_prev) / 2
194
+ elif len(noise_list) == 1:
195
+ noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
196
+ elif len(noise_list) == 2:
197
+ noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
198
+ elif len(noise_list) >= 3:
199
+ noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
200
+
201
+ x_prev = get_x_pred(x, noise_pred_prime, t)
202
+ noise_list.append(noise_pred)
203
+
204
+ return x_prev
205
+
206
+ def q_sample(self, x_start, t, noise=None):
207
+ noise = default(noise, lambda: torch.randn_like(x_start))
208
+ return (
209
+ extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
210
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
211
+ )
212
+
213
+ def p_losses(self, x_start, t, cond, noise=None, nonpadding=None):
214
+ noise = default(noise, lambda: torch.randn_like(x_start))
215
+
216
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
217
+ x_recon = self.denoise_fn(x_noisy, t, cond)
218
+
219
+ if self.loss_type == 'l1':
220
+ if nonpadding is not None:
221
+ loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean()
222
+ else:
223
+ # print('are you sure w/o nonpadding?')
224
+ loss = (noise - x_recon).abs().mean()
225
+
226
+ elif self.loss_type == 'l2':
227
+ loss = F.mse_loss(noise, x_recon)
228
+ else:
229
+ raise NotImplementedError()
230
+
231
+ return loss
232
+
233
+ @spaces.GPU(duration=180)
234
+ def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
235
+ ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
236
+ b, *_, device = *txt_tokens.shape, txt_tokens.device
237
+ ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
238
+ skip_decoder=(not infer), infer=infer, **kwargs)
239
+ cond = ret['decoder_inp'].transpose(1, 2)
240
+
241
+ if not infer:
242
+ t = torch.randint(0, self.K_step, (b,), device=device).long()
243
+ x = ref_mels
244
+ x = self.norm_spec(x)
245
+ x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
246
+ ret['diff_loss'] = self.p_losses(x, t, cond)
247
+ # nonpadding = (mel2ph != 0).float()
248
+ # ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding)
249
+ else:
250
+ ret['fs2_mel'] = ret['mel_out']
251
+ fs2_mels = ret['mel_out']
252
+ t = self.K_step
253
+ fs2_mels = self.norm_spec(fs2_mels)
254
+ fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
255
+
256
+ x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
257
+ if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
258
+ print('===> gaussion start.')
259
+ shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
260
+ x = torch.randn(shape, device=device)
261
+
262
+ if hparams.get('pndm_speedup'):
263
+ print('===> pndm speed:', hparams['pndm_speedup'])
264
+ self.noise_list = deque(maxlen=4)
265
+ iteration_interval = hparams['pndm_speedup']
266
+ for i in tqdm(reversed(range(0, t, iteration_interval)), desc='sample time step',
267
+ total=t // iteration_interval):
268
+ x = self.p_sample_plms(x, torch.full((b,), i, device=device, dtype=torch.long), iteration_interval,
269
+ cond)
270
+ else:
271
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
272
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
273
+ x = x[:, 0].transpose(1, 2)
274
+ if mel2ph is not None: # for singing
275
+ ret['mel_out'] = self.denorm_spec(x) * ((mel2ph > 0).float()[:, :, None])
276
+ else:
277
+ ret['mel_out'] = self.denorm_spec(x)
278
+ return ret
279
+
280
+ def norm_spec(self, x):
281
+ return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
282
+
283
+ def denorm_spec(self, x):
284
+ return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
285
+
286
+ def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph):
287
+ return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph)
288
+
289
+ def out2mel(self, x):
290
+ return x
291
+
292
+
293
+ class OfflineGaussianDiffusion(GaussianDiffusion):
294
+ @spaces.GPU(duration=180)
295
+ def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
296
+ ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
297
+ b, *_, device = *txt_tokens.shape, txt_tokens.device
298
+
299
+ ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
300
+ skip_decoder=True, infer=True, **kwargs)
301
+ cond = ret['decoder_inp'].transpose(1, 2)
302
+ fs2_mels = ref_mels[1]
303
+ ref_mels = ref_mels[0]
304
+
305
+ if not infer:
306
+ t = torch.randint(0, self.K_step, (b,), device=device).long()
307
+ x = ref_mels
308
+ x = self.norm_spec(x)
309
+ x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
310
+ ret['diff_loss'] = self.p_losses(x, t, cond)
311
+ else:
312
+ t = self.K_step
313
+ fs2_mels = self.norm_spec(fs2_mels)
314
+ fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
315
+
316
+ x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
317
+
318
+ if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
319
+ print('===> gaussion start.')
320
+ shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
321
+ x = torch.randn(shape, device=device)
322
+ for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
323
+ x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
324
+ x = x[:, 0].transpose(1, 2)
325
+ ret['mel_out'] = self.denorm_spec(x)
326
+ return ret