Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import os | |
| import random | |
| from collections import defaultdict | |
| from importlib.resources import files | |
| import torch | |
| from torch.nn.utils.rnn import pad_sequence | |
| import jieba | |
| from pypinyin import lazy_pinyin, Style | |
| # seed everything | |
| def seed_everything(seed=0): | |
| random.seed(seed) | |
| os.environ["PYTHONHASHSEED"] = str(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| # helpers | |
| def exists(v): | |
| return v is not None | |
| def default(v, d): | |
| return v if exists(v) else d | |
| # tensor helpers | |
| def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821 | |
| if not exists(length): | |
| length = t.amax() | |
| seq = torch.arange(length, device=t.device) | |
| return seq[None, :] < t[:, None] | |
| def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821 | |
| max_seq_len = seq_len.max().item() | |
| seq = torch.arange(max_seq_len, device=start.device).long() | |
| start_mask = seq[None, :] >= start[:, None] | |
| end_mask = seq[None, :] < end[:, None] | |
| return start_mask & end_mask | |
| def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821 | |
| lengths = (frac_lengths * seq_len).long() | |
| max_start = seq_len - lengths | |
| rand = torch.rand_like(frac_lengths) | |
| start = (max_start * rand).long().clamp(min=0) | |
| end = start + lengths | |
| return mask_from_start_end_indices(seq_len, start, end) | |
| def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722 | |
| if not exists(mask): | |
| return t.mean(dim=1) | |
| t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device)) | |
| num = t.sum(dim=1) | |
| den = mask.float().sum(dim=1) | |
| return num / den.clamp(min=1.0) | |
| # simple utf-8 tokenizer, since paper went character based | |
| def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722 | |
| list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style | |
| text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True) | |
| return text | |
| # char tokenizer, based on custom dataset's extracted .txt file | |
| def list_str_to_idx( | |
| text: list[str] | list[list[str]], | |
| vocab_char_map: dict[str, int], # {char: idx} | |
| padding_value=-1, | |
| ) -> int["b nt"]: # noqa: F722 | |
| list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style | |
| text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True) | |
| return text | |
| # Get tokenizer | |
| def get_tokenizer(dataset_name, tokenizer: str = "pinyin"): | |
| """ | |
| tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file | |
| - "char" for char-wise tokenizer, need .txt vocab_file | |
| - "byte" for utf-8 tokenizer | |
| - "custom" if you're directly passing in a path to the vocab.txt you want to use | |
| vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols | |
| - if use "char", derived from unfiltered character & symbol counts of custom dataset | |
| - if use "byte", set to 256 (unicode byte range) | |
| """ | |
| if tokenizer in ["pinyin", "char"]: | |
| tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt") | |
| with open(tokenizer_path, "r", encoding="utf-8") as f: | |
| vocab_char_map = {} | |
| for i, char in enumerate(f): | |
| vocab_char_map[char[:-1]] = i | |
| vocab_size = len(vocab_char_map) | |
| assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char" | |
| elif tokenizer == "byte": | |
| vocab_char_map = None | |
| vocab_size = 256 | |
| elif tokenizer == "custom": | |
| with open(dataset_name, "r", encoding="utf-8") as f: | |
| vocab_char_map = {} | |
| for i, char in enumerate(f): | |
| vocab_char_map[char[:-1]] = i | |
| vocab_size = len(vocab_char_map) | |
| return vocab_char_map, vocab_size | |
| # convert char to pinyin | |
| def convert_char_to_pinyin(text_list, polyphone=True): | |
| final_text_list = [] | |
| god_knows_why_en_testset_contains_zh_quote = str.maketrans( | |
| {"β": '"', "β": '"', "β": "'", "β": "'"} | |
| ) # in case librispeech (orig no-pc) test-clean | |
| custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov | |
| for text in text_list: | |
| char_list = [] | |
| text = text.translate(god_knows_why_en_testset_contains_zh_quote) | |
| text = text.translate(custom_trans) | |
| for seg in jieba.cut(text): | |
| seg_byte_len = len(bytes(seg, "UTF-8")) | |
| if seg_byte_len == len(seg): # if pure alphabets and symbols | |
| if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"": | |
| char_list.append(" ") | |
| char_list.extend(seg) | |
| elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters | |
| seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True) | |
| for c in seg: | |
| if c not in "γοΌγοΌοΌοΌοΌγγγγββ¦": | |
| char_list.append(" ") | |
| char_list.append(c) | |
| else: # if mixed chinese characters, alphabets and symbols | |
| for c in seg: | |
| if ord(c) < 256: | |
| char_list.extend(c) | |
| else: | |
| if c not in "γοΌγοΌοΌοΌοΌγγγγββ¦": | |
| char_list.append(" ") | |
| char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True)) | |
| else: # if is zh punc | |
| char_list.append(c) | |
| final_text_list.append(char_list) | |
| return final_text_list | |
| # filter func for dirty data with many repetitions | |
| def repetition_found(text, length=2, tolerance=10): | |
| pattern_count = defaultdict(int) | |
| for i in range(len(text) - length + 1): | |
| pattern = text[i : i + length] | |
| pattern_count[pattern] += 1 | |
| for pattern, count in pattern_count.items(): | |
| if count > tolerance: | |
| return True | |
| return False | |