Spaces:
Runtime error
Runtime error
| """ | |
| 受 GPT-SoVITS 启发 | |
| """ | |
| import os | |
| import os.path as osp | |
| import re | |
| import logging | |
| from time import time as ttime | |
| from warnings import warn | |
| logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
| logging.getLogger("urllib3").setLevel(logging.ERROR) | |
| logging.getLogger("httpcore").setLevel(logging.ERROR) | |
| logging.getLogger("httpx").setLevel(logging.ERROR) | |
| logging.getLogger("asyncio").setLevel(logging.ERROR) | |
| logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
| logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| import librosa | |
| import numpy as np | |
| import LangSegment | |
| import gradio as gr | |
| from transformers import AutoModelForMaskedLM, AutoTokenizer | |
| from feature_extractor import cnhubert | |
| from module.models import SynthesizerTrn | |
| from module.mel_processing import spectrogram_torch | |
| from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
| from text import cleaned_text_to_sequence | |
| from text.cleaner import clean_text | |
| from my_utils import load_audio | |
| from tools.i18n.i18n import I18nAuto | |
| def get_pretrain_model_path(env_name, log_file, def_path): | |
| """ 获取预训练模型路径 | |
| env_name: 从环境变量获取,第一优先级 | |
| log_file: 记录在文本文件内,第二优先级 | |
| def_path: 传参,第三优先级 | |
| """ | |
| if osp.isfile(log_file): | |
| def_path = open(log_file, 'r', encoding="utf-8").read() | |
| pretrain_path = os.environ.get(env_name, def_path) | |
| return pretrain_path | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| gpt_path = get_pretrain_model_path('gpt_path', "./gweight.txt", | |
| "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") | |
| sovits_path = get_pretrain_model_path('sovits_path', "./sweight.txt", | |
| "GPT_SoVITS/pretrained_models/s2G488k.pth") | |
| cnhubert_base_path = get_pretrain_model_path("cnhubert_base_path", '', "GPT_SoVITS/pretrained_models/chinese-hubert-base") | |
| bert_path = get_pretrain_model_path("bert_path", '', "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large") | |
| vc_webui_port = int(os.environ.get("vc_webui_port", 9888)) # specify gradio port | |
| print(f'port: {vc_webui_port}') | |
| is_share = eval(os.environ.get("is_share", "False")) | |
| if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
| os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
| # is_half = eval(os.environ.get("is_half", "True")) and not torch.backends.mps.is_available() | |
| is_half = False | |
| os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 | |
| cnhubert.cnhubert_base_path = cnhubert_base_path | |
| i18n = I18nAuto() | |
| tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
| bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
| if is_half: | |
| bert_model = bert_model.half().to(device) | |
| else: | |
| bert_model = bert_model.to(device) | |
| def get_bert_feature(text, word2ph): | |
| with torch.no_grad(): | |
| inputs = tokenizer(text, return_tensors="pt") | |
| for i in inputs: | |
| inputs[i] = inputs[i].to(device) | |
| res = bert_model(**inputs, output_hidden_states=True) | |
| res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
| assert len(word2ph) == len(text) | |
| phone_level_feature = [] | |
| for i in range(len(word2ph)): | |
| repeat_feature = res[i].repeat(word2ph[i], 1) | |
| phone_level_feature.append(repeat_feature) | |
| phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
| return phone_level_feature.T | |
| class DictToAttrRecursive(dict): | |
| def __init__(self, input_dict): | |
| super().__init__(input_dict) | |
| for key, value in input_dict.items(): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| self[key] = value | |
| setattr(self, key, value) | |
| def __getattr__(self, item): | |
| try: | |
| return self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| def __setattr__(self, key, value): | |
| if isinstance(value, dict): | |
| value = DictToAttrRecursive(value) | |
| super(DictToAttrRecursive, self).__setitem__(key, value) | |
| super().__setattr__(key, value) | |
| def __delattr__(self, item): | |
| try: | |
| del self[item] | |
| except KeyError: | |
| raise AttributeError(f"Attribute {item} not found") | |
| ssl_model = cnhubert.get_model() | |
| if is_half: | |
| ssl_model = ssl_model.half().to(device) | |
| else: | |
| ssl_model = ssl_model.to(device) | |
| def change_sovits_weights(sovits_path): | |
| global vq_model, hps | |
| dict_s2 = torch.load(sovits_path) | |
| hps = dict_s2["config"] | |
| hps = DictToAttrRecursive(hps) | |
| hps.model.semantic_frame_rate = "25hz" | |
| vq_model = SynthesizerTrn( | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model | |
| ) | |
| if ("pretrained" not in sovits_path): | |
| del vq_model.enc_q | |
| if is_half == True: | |
| vq_model = vq_model.half().to(device) | |
| else: | |
| vq_model = vq_model.to(device) | |
| vq_model.eval() | |
| print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
| with open("./sweight.txt", "w", encoding="utf-8") as f: | |
| f.write(sovits_path) | |
| change_sovits_weights(sovits_path) | |
| def change_gpt_weights(gpt_path): | |
| global hz, max_sec, t2s_model, config | |
| hz = 50 | |
| dict_s1 = torch.load(gpt_path) | |
| config = dict_s1["config"] | |
| max_sec = config["data"]["max_sec"] | |
| t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
| t2s_model.load_state_dict(dict_s1["weight"]) | |
| if is_half == True: | |
| t2s_model = t2s_model.half() | |
| t2s_model = t2s_model.to(device) | |
| t2s_model.eval() | |
| total = sum([param.nelement() for param in t2s_model.parameters()]) | |
| print("Number of parameter: %.2fM" % (total / 1e6)) | |
| with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) | |
| change_gpt_weights(gpt_path) | |
| def get_spepc(hps, filename): | |
| audio = load_audio(filename, int(hps.data.sampling_rate)) | |
| audio = torch.FloatTensor(audio) | |
| audio_norm = audio | |
| audio_norm = audio_norm.unsqueeze(0) | |
| spec = spectrogram_torch( | |
| audio_norm, | |
| hps.data.filter_length, | |
| hps.data.sampling_rate, | |
| hps.data.hop_length, | |
| hps.data.win_length, | |
| center=False, | |
| ) | |
| return spec | |
| dict_language = { | |
| i18n("中文"): "all_zh",#全部按中文识别 | |
| i18n("英文"): "en",#全部按英文识别#######不变 | |
| i18n("日文"): "all_ja",#全部按日文识别 | |
| i18n("中英混合"): "zh",#按中英混合识别####不变 | |
| i18n("日英混合"): "ja",#按日英混合识别####不变 | |
| i18n("多语种混合"): "auto",#多语种启动切分识别语种 | |
| } | |
| # def clean_text_inf(text, language): | |
| # phones, word2ph, norm_text = clean_text(text, language) | |
| # phones = cleaned_text_to_sequence(phones) | |
| # return phones, word2ph, norm_text | |
| def clean_text_inf(text, language): | |
| """ | |
| text: 字符串 | |
| language: 所属语言 | |
| return: | |
| phones: 音素 id 序列 | |
| word2ph: 每个字转音素后,对应的个数,对于中文,就是声韵母,因此是全是 2 的 list | |
| norm_text: 归一化后文本 | |
| """ | |
| formattext = "" | |
| language = language.replace("all_","") | |
| for tmp in LangSegment.getTexts(text): | |
| if language == "ja": | |
| if tmp["lang"] == language or tmp["lang"] == "zh": | |
| formattext += tmp["text"] + " " | |
| continue | |
| if tmp["lang"] == language: | |
| formattext += tmp["text"] + " " | |
| while " " in formattext: | |
| formattext = formattext.replace(" ", " ") | |
| phones, word2ph, norm_text = clean_text(formattext, language) | |
| # print(f'音素: {phones}') | |
| phones = cleaned_text_to_sequence(phones) # 统一了中、英、日等 | |
| # print(f'音素 id: {phones}') | |
| return phones, word2ph, norm_text | |
| dtype=torch.float16 if is_half == True else torch.float32 | |
| def get_bert_inf(phones, word2ph, norm_text, language): | |
| language=language.replace("all_","") | |
| if language == "zh": | |
| bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
| else: | |
| bert = torch.zeros( | |
| (1024, len(phones)), | |
| dtype=torch.float16 if is_half == True else torch.float32, | |
| ).to(device) | |
| return bert | |
| splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } | |
| def split(todo_text): | |
| todo_text = todo_text.replace("……", "。").replace("——", ",") | |
| if todo_text[-1] not in splits: | |
| todo_text += "。" | |
| i_split_head = i_split_tail = 0 | |
| len_text = len(todo_text) | |
| todo_texts = [] | |
| while 1: | |
| if i_split_head >= len_text: | |
| break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
| if todo_text[i_split_head] in splits: | |
| i_split_head += 1 | |
| todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
| i_split_tail = i_split_head | |
| else: | |
| i_split_head += 1 | |
| return todo_texts | |
| def custom_sort_key(s): | |
| # 使用正则表达式提取字符串中的数字部分和非数字部分 | |
| parts = re.split('(\d+)', s) | |
| # 将数字部分转换为整数,非数字部分保持不变 | |
| parts = [int(part) if part.isdigit() else part for part in parts] | |
| return parts | |
| def change_choices(): | |
| SoVITS_names, GPT_names = get_weights_names() | |
| return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"} | |
| pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth" | |
| pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" | |
| SoVITS_weight_root = "SoVITS_weights" | |
| GPT_weight_root = "GPT_weights" | |
| os.makedirs(SoVITS_weight_root, exist_ok=True) | |
| os.makedirs(GPT_weight_root, exist_ok=True) | |
| def get_weights_names(): | |
| SoVITS_names = [pretrained_sovits_name] | |
| for name in os.listdir(SoVITS_weight_root): | |
| if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name)) | |
| GPT_names = [pretrained_gpt_name] | |
| for name in os.listdir(GPT_weight_root): | |
| if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name)) | |
| return SoVITS_names, GPT_names | |
| SoVITS_names, GPT_names = get_weights_names() | |
| def get_code_from_ssl(ssl): | |
| ssl = vq_model.ssl_proj(ssl) | |
| quantized, codes, commit_loss, quantized_list = vq_model.quantizer(ssl) | |
| # print(codes.shape, codes.dtype) # [n_q, B, T] | |
| return codes.transpose(0, 1) # [B, n_q, T] | |
| def get_code_from_wav(wav_path): | |
| wav16k, sr = librosa.load(wav_path, sr=16000) | |
| if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
| # raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
| warn(i18n("参考音频在3~10秒范围外,请更换!")) | |
| wav16k = torch.from_numpy(wav16k) | |
| if is_half == True: | |
| wav16k = wav16k.half().to(device) | |
| else: | |
| wav16k = wav16k.to(device) | |
| ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
| "last_hidden_state" | |
| ].transpose( | |
| 1, 2 | |
| ) # .float() | |
| codes = get_code_from_ssl(ssl_content) # [B, n_q, T] | |
| prompt_semantic = codes[0, 0] | |
| return prompt_semantic | |
| def splite_en_inf(sentence, language): | |
| pattern = re.compile(r'[a-zA-Z ]+') | |
| textlist = [] | |
| langlist = [] | |
| pos = 0 | |
| for match in pattern.finditer(sentence): | |
| start, end = match.span() | |
| if start > pos: | |
| textlist.append(sentence[pos:start]) | |
| langlist.append(language) | |
| textlist.append(sentence[start:end]) | |
| langlist.append("en") | |
| pos = end | |
| if pos < len(sentence): | |
| textlist.append(sentence[pos:]) | |
| langlist.append(language) | |
| # Merge punctuation into previous word | |
| for i in range(len(textlist)-1, 0, -1): | |
| if re.match(r'^[\W_]+$', textlist[i]): | |
| textlist[i-1] += textlist[i] | |
| del textlist[i] | |
| del langlist[i] | |
| # Merge consecutive words with the same language tag | |
| i = 0 | |
| while i < len(langlist) - 1: | |
| if langlist[i] == langlist[i+1]: | |
| textlist[i] += textlist[i+1] | |
| del textlist[i+1] | |
| del langlist[i+1] | |
| else: | |
| i += 1 | |
| return textlist, langlist | |
| def nonen_clean_text_inf(text, language): | |
| if(language!="auto"): | |
| textlist, langlist = splite_en_inf(text, language) | |
| else: | |
| textlist=[] | |
| langlist=[] | |
| for tmp in LangSegment.getTexts(text): | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| phones_list = [] | |
| word2ph_list = [] | |
| norm_text_list = [] | |
| for i in range(len(textlist)): | |
| lang = langlist[i] | |
| phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
| phones_list.append(phones) | |
| if lang == "zh": | |
| word2ph_list.append(word2ph) | |
| norm_text_list.append(norm_text) | |
| print(word2ph_list) | |
| phones = sum(phones_list, []) | |
| word2ph = sum(word2ph_list, []) | |
| norm_text = ' '.join(norm_text_list) | |
| return phones, word2ph, norm_text | |
| def get_cleaned_text_final(text,language): | |
| if language in {"en","all_zh","all_ja"}: | |
| phones, word2ph, norm_text = clean_text_inf(text, language) | |
| elif language in {"zh", "ja","auto"}: | |
| phones, word2ph, norm_text = nonen_clean_text_inf(text, language) | |
| return phones, word2ph, norm_text | |
| def vc_main(wav_path, text, language, prompt_wav, noise_scale=0.5): | |
| """ Voice Conversion | |
| wav_path: 待变声的源音频 | |
| text: 对应文本 | |
| language: 对应语言 | |
| prompt_wav: 目标人声 | |
| """ | |
| language = dict_language[language] | |
| phones, word2ph, norm_text = get_cleaned_text_final(text, language) | |
| spec = get_spepc(hps, prompt_wav) | |
| spec = spec.to(device) | |
| codes = get_code_from_wav(wav_path)[None, None].to(device) # 必须是 3D, [n_q, B, T] | |
| ge = vq_model.ref_enc(spec) # [B, D, T/1] | |
| quantized = vq_model.quantizer.decode(codes) # [B, D, T] | |
| if hps.model.semantic_frame_rate == "25hz": | |
| quantized = F.interpolate( | |
| quantized, size=int(quantized.shape[-1] * 2), mode="nearest" | |
| ) | |
| lengths_tensor = torch.LongTensor([quantized.shape[-1]]).to(device) | |
| phones_tensor = torch.LongTensor(phones)[None].to(device) | |
| phones_lengths_tensor = torch.LongTensor([len(phones)]).to(device) | |
| _, m_p, logs_p, y_mask = vq_model.enc_p( | |
| quantized, lengths_tensor, phones_tensor, phones_lengths_tensor, ge | |
| ) | |
| z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
| z = vq_model.flow(z_p, y_mask, g=ge, reverse=True) | |
| o = vq_model.dec((z * y_mask)[:, :, :], g=ge) # [B, D=1, T], torch.float32 (-1, 1) | |
| audio = o.detach().cpu().numpy()[0, 0] | |
| max_audio = np.abs(audio).max() # 简单防止16bit爆音 | |
| if max_audio > 1: | |
| audio /= max_audio | |
| yield hps.data.sampling_rate, (audio * 32768).astype(np.int16) | |
| with gr.Blocks(title="GPT-SoVITS-VC WebUI") as app: | |
| gr.Markdown( | |
| value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") | |
| ) | |
| with gr.Group(): | |
| gr.Markdown(value=i18n("模型切换")) | |
| with gr.Row(): | |
| GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True) | |
| SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True) | |
| refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary") | |
| refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) | |
| SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], []) | |
| GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) | |
| gr.Markdown(value=i18n("* 请上传目标音色音频,要求说话人单一,声音干净")) | |
| with gr.Row(): | |
| inp_ref = gr.Audio(label=i18n("请上传 3~10 秒内参考音频,超过会报警!"), type="filepath") | |
| gr.Markdown(value=i18n("* 请填写需要变声/转换的源音频,以及对应文本")) | |
| with gr.Row(): | |
| src_audio = gr.Audio(label=i18n('源音频'), type='filepath') | |
| text = gr.Textbox(label=i18n("源音频对应文本"), value="") | |
| text_language = gr.Dropdown( | |
| label=i18n("文本语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文") | |
| ) | |
| inference_button = gr.Button(i18n("合成语音"), variant="primary") | |
| output = gr.Audio(label=i18n("变声后")) | |
| inference_button.click( | |
| vc_main, | |
| [src_audio, text, text_language, inp_ref], | |
| [output], | |
| ) | |
| app.queue().launch( | |
| share=True, | |
| show_error=True, | |
| ) | |