Spaces:
Runtime error
Runtime error
Commit
·
6d7e145
0
Parent(s):
Duplicate from BartPoint/VoiceChange
Browse filesCo-authored-by: Bart Point <[email protected]>
- .gitattributes +38 -0
- LICENSE +51 -0
- README.md +12 -0
- app_multi.py +469 -0
- config.py +17 -0
- hubert_base.pt +3 -0
- infer_pack/attentions.py +417 -0
- infer_pack/commons.py +166 -0
- infer_pack/models.py +1116 -0
- infer_pack/models_onnx.py +760 -0
- infer_pack/models_onnx_moess.py +849 -0
- infer_pack/modules.py +522 -0
- infer_pack/transforms.py +209 -0
- model/alpha/Alpha2333333.pth +3 -0
- model/alpha/added_IVF1322_Flat_nprobe_1.index +3 -0
- model/alpha/alpha.png +0 -0
- model/alpha/config.json +11 -0
- model/arianagrande/Ariana.png +0 -0
- model/arianagrande/added_IVF1033_Flat_nprobe_1_v2.index +3 -0
- model/arianagrande/arianagrande.pth +3 -0
- model/arianagrande/config.json +11 -0
- model/biden/added_IVF2606_Flat_nprobe_1_v2.index +3 -0
- model/biden/biden.png +0 -0
- model/biden/biden.pth +3 -0
- model/biden/config.json +11 -0
- model/bob/Sponge.png +0 -0
- model/bob/added_IVF3536_Flat_nprobe_1_v2.index +3 -0
- model/bob/bobsponge.pth +3 -0
- model/bob/config.json +11 -0
- model/gambino/Hamza.png +3 -0
- model/gambino/added_IVF536_Flat_nprobe_1.index +3 -0
- model/gambino/config.json +11 -0
- model/gambino/gambino.pth +3 -0
- model/hamza/Hamza.png +3 -0
- model/hamza/added_IVF1506_Flat_nprobe_1.index +3 -0
- model/hamza/config.json +11 -0
- model/hamza/hamza.pth +3 -0
- model/macmiller/added_IVF2124_Flat_nprobe_1_v2.index +3 -0
- model/macmiller/config.json +11 -0
- model/macmiller/macmiller.png +3 -0
- model/macmiller/macmillerv3.pth +3 -0
- model/mickaeljackson/Mickael.png +0 -0
- model/mickaeljackson/added_IVF1448_Flat_nprobe_1_v2.index +3 -0
- model/mickaeljackson/config.json +11 -0
- model/mickaeljackson/michael-jackson.pth +3 -0
- multi_config.json +9 -0
- requirements.txt +12 -0
- util.py +81 -0
- vc_infer_pipeline.py +363 -0
.gitattributes
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.index filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model/macmiller/macmiller.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
model/hamza/Hamza.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
model/gambino/Hamza.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 liujing04
|
| 4 |
+
Copyright (c) 2023 源文雨
|
| 5 |
+
Copyright (c) 2023 on9.moe Webslaves
|
| 6 |
+
|
| 7 |
+
本软件及其相关代码以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
|
| 8 |
+
如不认可该条款,则不能使用或引用软件包内任何代码和文件。
|
| 9 |
+
|
| 10 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
| 13 |
+
|
| 14 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
| 15 |
+
|
| 16 |
+
特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
|
| 17 |
+
上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
|
| 18 |
+
软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
|
| 19 |
+
|
| 20 |
+
相关引用库协议如下:
|
| 21 |
+
#################
|
| 22 |
+
ContentVec
|
| 23 |
+
https://github.com/auspicious3000/contentvec/blob/main/LICENSE
|
| 24 |
+
MIT License
|
| 25 |
+
#################
|
| 26 |
+
VITS
|
| 27 |
+
https://github.com/jaywalnut310/vits/blob/main/LICENSE
|
| 28 |
+
MIT License
|
| 29 |
+
#################
|
| 30 |
+
HIFIGAN
|
| 31 |
+
https://github.com/jik876/hifi-gan/blob/master/LICENSE
|
| 32 |
+
MIT License
|
| 33 |
+
#################
|
| 34 |
+
gradio
|
| 35 |
+
https://github.com/gradio-app/gradio/blob/main/LICENSE
|
| 36 |
+
Apache License 2.0
|
| 37 |
+
#################
|
| 38 |
+
ffmpeg
|
| 39 |
+
https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
|
| 40 |
+
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
|
| 41 |
+
LPGLv3 License
|
| 42 |
+
MIT License
|
| 43 |
+
#################
|
| 44 |
+
ultimatevocalremovergui
|
| 45 |
+
https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
|
| 46 |
+
https://github.com/yang123qwe/vocal_separation_by_uvr5
|
| 47 |
+
MIT License
|
| 48 |
+
#################
|
| 49 |
+
audio-slicer
|
| 50 |
+
https://github.com/openvpi/audio-slicer/blob/main/LICENSE
|
| 51 |
+
MIT License
|
README.md
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: VoiceChange
|
| 3 |
+
emoji: 👀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.28.3
|
| 8 |
+
app_file: app_multi.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: BartPoint/VoiceChange
|
| 12 |
+
---
|
app_multi.py
ADDED
|
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Union
|
| 2 |
+
|
| 3 |
+
from argparse import ArgumentParser
|
| 4 |
+
|
| 5 |
+
import asyncio
|
| 6 |
+
import json
|
| 7 |
+
import hashlib
|
| 8 |
+
from os import path, getenv
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import librosa
|
| 16 |
+
|
| 17 |
+
import edge_tts
|
| 18 |
+
|
| 19 |
+
import config
|
| 20 |
+
import util
|
| 21 |
+
from infer_pack.models import (
|
| 22 |
+
SynthesizerTrnMs768NSFsid,
|
| 23 |
+
SynthesizerTrnMs768NSFsid_nono
|
| 24 |
+
)
|
| 25 |
+
from vc_infer_pipeline import VC
|
| 26 |
+
|
| 27 |
+
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa
|
| 28 |
+
in_hf_space = getenv('SYSTEM') == 'spaces'
|
| 29 |
+
|
| 30 |
+
# Argument parsing
|
| 31 |
+
arg_parser = ArgumentParser()
|
| 32 |
+
arg_parser.add_argument(
|
| 33 |
+
'--hubert',
|
| 34 |
+
default=getenv('RVC_HUBERT', 'hubert_base.pt'),
|
| 35 |
+
help='path to hubert base model (default: hubert_base.pt)'
|
| 36 |
+
)
|
| 37 |
+
arg_parser.add_argument(
|
| 38 |
+
'--config',
|
| 39 |
+
default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
|
| 40 |
+
help='path to config file (default: multi_config.json)'
|
| 41 |
+
)
|
| 42 |
+
arg_parser.add_argument(
|
| 43 |
+
'--api',
|
| 44 |
+
action='store_true',
|
| 45 |
+
help='enable api endpoint'
|
| 46 |
+
)
|
| 47 |
+
arg_parser.add_argument(
|
| 48 |
+
'--cache-examples',
|
| 49 |
+
action='store_true',
|
| 50 |
+
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa
|
| 51 |
+
)
|
| 52 |
+
args = arg_parser.parse_args()
|
| 53 |
+
|
| 54 |
+
app_css = '''
|
| 55 |
+
#model_info img {
|
| 56 |
+
max-width: 100px;
|
| 57 |
+
max-height: 100px;
|
| 58 |
+
float: right;
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
#model_info p {
|
| 62 |
+
margin: unset;
|
| 63 |
+
}
|
| 64 |
+
'''
|
| 65 |
+
|
| 66 |
+
app = gr.Blocks(
|
| 67 |
+
theme=gr.themes.Soft(primary_hue="orange", secondary_hue="slate"),
|
| 68 |
+
css=app_css,
|
| 69 |
+
analytics_enabled=False
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# Load hubert model
|
| 73 |
+
hubert_model = util.load_hubert_model(config.device, args.hubert)
|
| 74 |
+
hubert_model.eval()
|
| 75 |
+
|
| 76 |
+
# Load models
|
| 77 |
+
multi_cfg = json.load(open(args.config, 'r'))
|
| 78 |
+
loaded_models = []
|
| 79 |
+
|
| 80 |
+
for model_name in multi_cfg.get('models'):
|
| 81 |
+
print(f'Loading model: {model_name}')
|
| 82 |
+
|
| 83 |
+
# Load model info
|
| 84 |
+
model_info = json.load(
|
| 85 |
+
open(path.join('model', model_name, 'config.json'), 'r')
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Load RVC checkpoint
|
| 89 |
+
cpt = torch.load(
|
| 90 |
+
path.join('model', model_name, model_info['model']),
|
| 91 |
+
map_location='cpu'
|
| 92 |
+
)
|
| 93 |
+
tgt_sr = cpt['config'][-1]
|
| 94 |
+
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk
|
| 95 |
+
|
| 96 |
+
if_f0 = cpt.get('f0', 1)
|
| 97 |
+
net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono]
|
| 98 |
+
if if_f0 == 1:
|
| 99 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
| 100 |
+
*cpt['config'],
|
| 101 |
+
is_half=util.is_half(config.device)
|
| 102 |
+
)
|
| 103 |
+
else:
|
| 104 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])
|
| 105 |
+
|
| 106 |
+
del net_g.enc_q
|
| 107 |
+
|
| 108 |
+
# According to original code, this thing seems necessary.
|
| 109 |
+
print(net_g.load_state_dict(cpt['weight'], strict=False))
|
| 110 |
+
|
| 111 |
+
net_g.eval().to(config.device)
|
| 112 |
+
net_g = net_g.half() if util.is_half(config.device) else net_g.float()
|
| 113 |
+
|
| 114 |
+
vc = VC(tgt_sr, config)
|
| 115 |
+
|
| 116 |
+
loaded_models.append(dict(
|
| 117 |
+
name=model_name,
|
| 118 |
+
metadata=model_info,
|
| 119 |
+
vc=vc,
|
| 120 |
+
net_g=net_g,
|
| 121 |
+
if_f0=if_f0,
|
| 122 |
+
target_sr=tgt_sr
|
| 123 |
+
))
|
| 124 |
+
|
| 125 |
+
print(f'Models loaded: {len(loaded_models)}')
|
| 126 |
+
|
| 127 |
+
# Edge TTS speakers
|
| 128 |
+
tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) # noqa
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa
|
| 132 |
+
def vc_func(
|
| 133 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 134 |
+
filter_radius, rms_mix_rate, resample_option
|
| 135 |
+
):
|
| 136 |
+
if input_audio is None:
|
| 137 |
+
return (None, 'Please provide input audio.')
|
| 138 |
+
|
| 139 |
+
if model_index is None:
|
| 140 |
+
return (None, 'Please select a model.')
|
| 141 |
+
|
| 142 |
+
model = loaded_models[model_index]
|
| 143 |
+
|
| 144 |
+
# Reference: so-vits
|
| 145 |
+
(audio_samp, audio_npy) = input_audio
|
| 146 |
+
|
| 147 |
+
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
|
| 148 |
+
# Can be change well, we will see
|
| 149 |
+
if (audio_npy.shape[0] / audio_samp) > 60 and in_hf_space:
|
| 150 |
+
return (None, 'Input audio is longer than 60 secs.')
|
| 151 |
+
|
| 152 |
+
# Bloody hell: https://stackoverflow.com/questions/26921836/
|
| 153 |
+
if audio_npy.dtype != np.float32: # :thonk:
|
| 154 |
+
audio_npy = (
|
| 155 |
+
audio_npy / np.iinfo(audio_npy.dtype).max
|
| 156 |
+
).astype(np.float32)
|
| 157 |
+
|
| 158 |
+
if len(audio_npy.shape) > 1:
|
| 159 |
+
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))
|
| 160 |
+
|
| 161 |
+
if audio_samp != 16000:
|
| 162 |
+
audio_npy = librosa.resample(
|
| 163 |
+
audio_npy,
|
| 164 |
+
orig_sr=audio_samp,
|
| 165 |
+
target_sr=16000
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
pitch_int = int(pitch_adjust)
|
| 169 |
+
|
| 170 |
+
resample = (
|
| 171 |
+
0 if resample_option == 'Disable resampling'
|
| 172 |
+
else int(resample_option)
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
times = [0, 0, 0]
|
| 176 |
+
|
| 177 |
+
checksum = hashlib.sha512()
|
| 178 |
+
checksum.update(audio_npy.tobytes())
|
| 179 |
+
|
| 180 |
+
output_audio = model['vc'].pipeline(
|
| 181 |
+
hubert_model,
|
| 182 |
+
model['net_g'],
|
| 183 |
+
model['metadata'].get('speaker_id', 0),
|
| 184 |
+
audio_npy,
|
| 185 |
+
checksum.hexdigest(),
|
| 186 |
+
times,
|
| 187 |
+
pitch_int,
|
| 188 |
+
f0_method,
|
| 189 |
+
path.join('model', model['name'], model['metadata']['feat_index']),
|
| 190 |
+
feat_ratio,
|
| 191 |
+
model['if_f0'],
|
| 192 |
+
filter_radius,
|
| 193 |
+
model['target_sr'],
|
| 194 |
+
resample,
|
| 195 |
+
rms_mix_rate,
|
| 196 |
+
'v2'
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
out_sr = (
|
| 200 |
+
resample if resample >= 16000 and model['target_sr'] != resample
|
| 201 |
+
else model['target_sr']
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
|
| 205 |
+
return ((out_sr, output_audio), 'Success')
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
async def edge_tts_vc_func(
|
| 209 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
|
| 210 |
+
filter_radius, rms_mix_rate, resample_option
|
| 211 |
+
):
|
| 212 |
+
if input_text is None:
|
| 213 |
+
return (None, 'Please provide TTS text.')
|
| 214 |
+
|
| 215 |
+
if tts_speaker is None:
|
| 216 |
+
return (None, 'Please select TTS speaker.')
|
| 217 |
+
|
| 218 |
+
if model_index is None:
|
| 219 |
+
return (None, 'Please select a model.')
|
| 220 |
+
|
| 221 |
+
speaker = tts_speakers_list[tts_speaker]['ShortName']
|
| 222 |
+
(tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text)
|
| 223 |
+
return vc_func(
|
| 224 |
+
(tts_sr, tts_np),
|
| 225 |
+
model_index,
|
| 226 |
+
pitch_adjust,
|
| 227 |
+
f0_method,
|
| 228 |
+
feat_ratio,
|
| 229 |
+
filter_radius,
|
| 230 |
+
rms_mix_rate,
|
| 231 |
+
resample_option
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def update_model_info(model_index):
|
| 236 |
+
if model_index is None:
|
| 237 |
+
return str(
|
| 238 |
+
'### Model info\n'
|
| 239 |
+
'Please select a model from dropdown above.'
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
model = loaded_models[model_index]
|
| 243 |
+
model_icon = model['metadata'].get('icon', '')
|
| 244 |
+
|
| 245 |
+
return str(
|
| 246 |
+
'### Model info\n'
|
| 247 |
+
''
|
| 248 |
+
'**{name}**\n\n'
|
| 249 |
+
'Author: {author}\n\n'
|
| 250 |
+
'Source: {source}\n\n'
|
| 251 |
+
'{note}'
|
| 252 |
+
).format(
|
| 253 |
+
name=model['metadata'].get('name'),
|
| 254 |
+
author=model['metadata'].get('author', 'Anonymous'),
|
| 255 |
+
source=model['metadata'].get('source', 'Unknown'),
|
| 256 |
+
note=model['metadata'].get('note', ''),
|
| 257 |
+
icon=(
|
| 258 |
+
model_icon
|
| 259 |
+
if model_icon.startswith(('http://', 'https://'))
|
| 260 |
+
else '/file/model/%s/%s' % (model['name'], model_icon)
|
| 261 |
+
)
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def _example_vc(
|
| 266 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 267 |
+
filter_radius, rms_mix_rate, resample_option
|
| 268 |
+
):
|
| 269 |
+
(audio, message) = vc_func(
|
| 270 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 271 |
+
filter_radius, rms_mix_rate, resample_option
|
| 272 |
+
)
|
| 273 |
+
return (
|
| 274 |
+
audio,
|
| 275 |
+
message,
|
| 276 |
+
update_model_info(model_index)
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
async def _example_edge_tts(
|
| 281 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
|
| 282 |
+
filter_radius, rms_mix_rate, resample_option
|
| 283 |
+
):
|
| 284 |
+
(audio, message) = await edge_tts_vc_func(
|
| 285 |
+
input_text, model_index, tts_speaker, pitch_adjust, f0_method,
|
| 286 |
+
feat_ratio, filter_radius, rms_mix_rate, resample_option
|
| 287 |
+
)
|
| 288 |
+
return (
|
| 289 |
+
audio,
|
| 290 |
+
message,
|
| 291 |
+
update_model_info(model_index)
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
with app:
|
| 296 |
+
gr.Markdown(
|
| 297 |
+
'## A simplistic Web interface\n'
|
| 298 |
+
'RVC interface, project based on [RVC-WebUI](https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI)' # thx noqa
|
| 299 |
+
'A lot of inspiration from what\'s already out there, including [zomehwh/rvc-models](https://huggingface.co/spaces/zomehwh/rvc-models) & [DJQmUKV/rvc-inference](https://huggingface.co/spaces/DJQmUKV/rvc-inference).\n ' # thx noqa
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
with gr.Row():
|
| 303 |
+
with gr.Column():
|
| 304 |
+
with gr.Tab('Audio conversion'):
|
| 305 |
+
input_audio = gr.Audio(label='Input audio')
|
| 306 |
+
|
| 307 |
+
vc_convert_btn = gr.Button('Convert', variant='primary')
|
| 308 |
+
|
| 309 |
+
with gr.Tab('TTS conversion'):
|
| 310 |
+
tts_input = gr.TextArea(
|
| 311 |
+
label='TTS input text'
|
| 312 |
+
)
|
| 313 |
+
tts_speaker = gr.Dropdown(
|
| 314 |
+
[
|
| 315 |
+
'%s (%s)' % (
|
| 316 |
+
s['FriendlyName'],
|
| 317 |
+
s['Gender']
|
| 318 |
+
)
|
| 319 |
+
for s in tts_speakers_list
|
| 320 |
+
],
|
| 321 |
+
label='TTS speaker',
|
| 322 |
+
type='index'
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
tts_convert_btn = gr.Button('Convert', variant='primary')
|
| 326 |
+
|
| 327 |
+
pitch_adjust = gr.Slider(
|
| 328 |
+
label='Pitch',
|
| 329 |
+
minimum=-24,
|
| 330 |
+
maximum=24,
|
| 331 |
+
step=1,
|
| 332 |
+
value=0
|
| 333 |
+
)
|
| 334 |
+
f0_method = gr.Radio(
|
| 335 |
+
label='f0 methods',
|
| 336 |
+
choices=['pm', 'harvest'],
|
| 337 |
+
value='pm',
|
| 338 |
+
interactive=True
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
with gr.Accordion('Advanced options', open=False):
|
| 342 |
+
feat_ratio = gr.Slider(
|
| 343 |
+
label='Feature ratio',
|
| 344 |
+
minimum=0,
|
| 345 |
+
maximum=1,
|
| 346 |
+
step=0.1,
|
| 347 |
+
value=0.6
|
| 348 |
+
)
|
| 349 |
+
filter_radius = gr.Slider(
|
| 350 |
+
label='Filter radius',
|
| 351 |
+
minimum=0,
|
| 352 |
+
maximum=7,
|
| 353 |
+
step=1,
|
| 354 |
+
value=3
|
| 355 |
+
)
|
| 356 |
+
rms_mix_rate = gr.Slider(
|
| 357 |
+
label='Volume envelope mix rate',
|
| 358 |
+
minimum=0,
|
| 359 |
+
maximum=1,
|
| 360 |
+
step=0.1,
|
| 361 |
+
value=1
|
| 362 |
+
)
|
| 363 |
+
resample_rate = gr.Dropdown(
|
| 364 |
+
[
|
| 365 |
+
'Disable resampling',
|
| 366 |
+
'16000',
|
| 367 |
+
'22050',
|
| 368 |
+
'44100',
|
| 369 |
+
'48000'
|
| 370 |
+
],
|
| 371 |
+
label='Resample rate',
|
| 372 |
+
value='Disable resampling'
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
with gr.Column():
|
| 376 |
+
# Model select
|
| 377 |
+
model_index = gr.Dropdown(
|
| 378 |
+
[
|
| 379 |
+
'%s - %s' % (
|
| 380 |
+
m['metadata'].get('source', 'Unknown'),
|
| 381 |
+
m['metadata'].get('name')
|
| 382 |
+
)
|
| 383 |
+
for m in loaded_models
|
| 384 |
+
],
|
| 385 |
+
label='Model',
|
| 386 |
+
type='index'
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
# Model info
|
| 390 |
+
with gr.Box():
|
| 391 |
+
model_info = gr.Markdown(
|
| 392 |
+
'### Model info\n'
|
| 393 |
+
'Please select a model from dropdown above.',
|
| 394 |
+
elem_id='model_info'
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
output_audio = gr.Audio(label='Output audio')
|
| 398 |
+
output_msg = gr.Textbox(label='Output message')
|
| 399 |
+
|
| 400 |
+
multi_examples = multi_cfg.get('examples')
|
| 401 |
+
if (
|
| 402 |
+
multi_examples and
|
| 403 |
+
multi_examples.get('vc') and multi_examples.get('tts_vc')
|
| 404 |
+
):
|
| 405 |
+
with gr.Accordion('Sweet sweet examples', open=False):
|
| 406 |
+
with gr.Row():
|
| 407 |
+
# VC Example
|
| 408 |
+
if multi_examples.get('vc'):
|
| 409 |
+
gr.Examples(
|
| 410 |
+
label='Audio conversion examples',
|
| 411 |
+
examples=multi_examples.get('vc'),
|
| 412 |
+
inputs=[
|
| 413 |
+
input_audio, model_index, pitch_adjust, f0_method,
|
| 414 |
+
feat_ratio
|
| 415 |
+
],
|
| 416 |
+
outputs=[output_audio, output_msg, model_info],
|
| 417 |
+
fn=_example_vc,
|
| 418 |
+
cache_examples=args.cache_examples,
|
| 419 |
+
run_on_click=args.cache_examples
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
# Edge TTS Example
|
| 423 |
+
if multi_examples.get('tts_vc'):
|
| 424 |
+
gr.Examples(
|
| 425 |
+
label='TTS conversion examples',
|
| 426 |
+
examples=multi_examples.get('tts_vc'),
|
| 427 |
+
inputs=[
|
| 428 |
+
tts_input, model_index, tts_speaker, pitch_adjust,
|
| 429 |
+
f0_method, feat_ratio
|
| 430 |
+
],
|
| 431 |
+
outputs=[output_audio, output_msg, model_info],
|
| 432 |
+
fn=_example_edge_tts,
|
| 433 |
+
cache_examples=args.cache_examples,
|
| 434 |
+
run_on_click=args.cache_examples
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
vc_convert_btn.click(
|
| 438 |
+
vc_func,
|
| 439 |
+
[
|
| 440 |
+
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
|
| 441 |
+
filter_radius, rms_mix_rate, resample_rate
|
| 442 |
+
],
|
| 443 |
+
[output_audio, output_msg],
|
| 444 |
+
api_name='audio_conversion'
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
tts_convert_btn.click(
|
| 448 |
+
edge_tts_vc_func,
|
| 449 |
+
[
|
| 450 |
+
tts_input, model_index, tts_speaker, pitch_adjust, f0_method,
|
| 451 |
+
feat_ratio, filter_radius, rms_mix_rate, resample_rate
|
| 452 |
+
],
|
| 453 |
+
[output_audio, output_msg],
|
| 454 |
+
api_name='tts_conversion'
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
model_index.change(
|
| 458 |
+
update_model_info,
|
| 459 |
+
inputs=[model_index],
|
| 460 |
+
outputs=[model_info],
|
| 461 |
+
show_progress=False,
|
| 462 |
+
queue=False
|
| 463 |
+
)
|
| 464 |
+
|
| 465 |
+
app.queue(
|
| 466 |
+
concurrency_count=1,
|
| 467 |
+
max_size=20,
|
| 468 |
+
api_open=args.api
|
| 469 |
+
).launch()
|
config.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
import util
|
| 4 |
+
|
| 5 |
+
device = (
|
| 6 |
+
'cuda:0' if torch.cuda.is_available()
|
| 7 |
+
else (
|
| 8 |
+
'mps' if util.has_mps()
|
| 9 |
+
else 'cpu'
|
| 10 |
+
)
|
| 11 |
+
)
|
| 12 |
+
is_half = util.is_half(device)
|
| 13 |
+
|
| 14 |
+
x_pad = 3 if is_half else 1
|
| 15 |
+
x_query = 10 if is_half else 6
|
| 16 |
+
x_center = 60 if is_half else 38
|
| 17 |
+
x_max = 65 if is_half else 41
|
hubert_base.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
|
| 3 |
+
size 189507909
|
infer_pack/attentions.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
from infer_pack import commons
|
| 9 |
+
from infer_pack import modules
|
| 10 |
+
from infer_pack.modules import LayerNorm
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Encoder(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
hidden_channels,
|
| 17 |
+
filter_channels,
|
| 18 |
+
n_heads,
|
| 19 |
+
n_layers,
|
| 20 |
+
kernel_size=1,
|
| 21 |
+
p_dropout=0.0,
|
| 22 |
+
window_size=10,
|
| 23 |
+
**kwargs
|
| 24 |
+
):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.hidden_channels = hidden_channels
|
| 27 |
+
self.filter_channels = filter_channels
|
| 28 |
+
self.n_heads = n_heads
|
| 29 |
+
self.n_layers = n_layers
|
| 30 |
+
self.kernel_size = kernel_size
|
| 31 |
+
self.p_dropout = p_dropout
|
| 32 |
+
self.window_size = window_size
|
| 33 |
+
|
| 34 |
+
self.drop = nn.Dropout(p_dropout)
|
| 35 |
+
self.attn_layers = nn.ModuleList()
|
| 36 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 37 |
+
self.ffn_layers = nn.ModuleList()
|
| 38 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 39 |
+
for i in range(self.n_layers):
|
| 40 |
+
self.attn_layers.append(
|
| 41 |
+
MultiHeadAttention(
|
| 42 |
+
hidden_channels,
|
| 43 |
+
hidden_channels,
|
| 44 |
+
n_heads,
|
| 45 |
+
p_dropout=p_dropout,
|
| 46 |
+
window_size=window_size,
|
| 47 |
+
)
|
| 48 |
+
)
|
| 49 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 50 |
+
self.ffn_layers.append(
|
| 51 |
+
FFN(
|
| 52 |
+
hidden_channels,
|
| 53 |
+
hidden_channels,
|
| 54 |
+
filter_channels,
|
| 55 |
+
kernel_size,
|
| 56 |
+
p_dropout=p_dropout,
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 60 |
+
|
| 61 |
+
def forward(self, x, x_mask):
|
| 62 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 63 |
+
x = x * x_mask
|
| 64 |
+
for i in range(self.n_layers):
|
| 65 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
| 66 |
+
y = self.drop(y)
|
| 67 |
+
x = self.norm_layers_1[i](x + y)
|
| 68 |
+
|
| 69 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 70 |
+
y = self.drop(y)
|
| 71 |
+
x = self.norm_layers_2[i](x + y)
|
| 72 |
+
x = x * x_mask
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Decoder(nn.Module):
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
hidden_channels,
|
| 80 |
+
filter_channels,
|
| 81 |
+
n_heads,
|
| 82 |
+
n_layers,
|
| 83 |
+
kernel_size=1,
|
| 84 |
+
p_dropout=0.0,
|
| 85 |
+
proximal_bias=False,
|
| 86 |
+
proximal_init=True,
|
| 87 |
+
**kwargs
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.hidden_channels = hidden_channels
|
| 91 |
+
self.filter_channels = filter_channels
|
| 92 |
+
self.n_heads = n_heads
|
| 93 |
+
self.n_layers = n_layers
|
| 94 |
+
self.kernel_size = kernel_size
|
| 95 |
+
self.p_dropout = p_dropout
|
| 96 |
+
self.proximal_bias = proximal_bias
|
| 97 |
+
self.proximal_init = proximal_init
|
| 98 |
+
|
| 99 |
+
self.drop = nn.Dropout(p_dropout)
|
| 100 |
+
self.self_attn_layers = nn.ModuleList()
|
| 101 |
+
self.norm_layers_0 = nn.ModuleList()
|
| 102 |
+
self.encdec_attn_layers = nn.ModuleList()
|
| 103 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 104 |
+
self.ffn_layers = nn.ModuleList()
|
| 105 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 106 |
+
for i in range(self.n_layers):
|
| 107 |
+
self.self_attn_layers.append(
|
| 108 |
+
MultiHeadAttention(
|
| 109 |
+
hidden_channels,
|
| 110 |
+
hidden_channels,
|
| 111 |
+
n_heads,
|
| 112 |
+
p_dropout=p_dropout,
|
| 113 |
+
proximal_bias=proximal_bias,
|
| 114 |
+
proximal_init=proximal_init,
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
| 118 |
+
self.encdec_attn_layers.append(
|
| 119 |
+
MultiHeadAttention(
|
| 120 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
| 121 |
+
)
|
| 122 |
+
)
|
| 123 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 124 |
+
self.ffn_layers.append(
|
| 125 |
+
FFN(
|
| 126 |
+
hidden_channels,
|
| 127 |
+
hidden_channels,
|
| 128 |
+
filter_channels,
|
| 129 |
+
kernel_size,
|
| 130 |
+
p_dropout=p_dropout,
|
| 131 |
+
causal=True,
|
| 132 |
+
)
|
| 133 |
+
)
|
| 134 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 135 |
+
|
| 136 |
+
def forward(self, x, x_mask, h, h_mask):
|
| 137 |
+
"""
|
| 138 |
+
x: decoder input
|
| 139 |
+
h: encoder output
|
| 140 |
+
"""
|
| 141 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
| 142 |
+
device=x.device, dtype=x.dtype
|
| 143 |
+
)
|
| 144 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 145 |
+
x = x * x_mask
|
| 146 |
+
for i in range(self.n_layers):
|
| 147 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
| 148 |
+
y = self.drop(y)
|
| 149 |
+
x = self.norm_layers_0[i](x + y)
|
| 150 |
+
|
| 151 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
| 152 |
+
y = self.drop(y)
|
| 153 |
+
x = self.norm_layers_1[i](x + y)
|
| 154 |
+
|
| 155 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 156 |
+
y = self.drop(y)
|
| 157 |
+
x = self.norm_layers_2[i](x + y)
|
| 158 |
+
x = x * x_mask
|
| 159 |
+
return x
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class MultiHeadAttention(nn.Module):
|
| 163 |
+
def __init__(
|
| 164 |
+
self,
|
| 165 |
+
channels,
|
| 166 |
+
out_channels,
|
| 167 |
+
n_heads,
|
| 168 |
+
p_dropout=0.0,
|
| 169 |
+
window_size=None,
|
| 170 |
+
heads_share=True,
|
| 171 |
+
block_length=None,
|
| 172 |
+
proximal_bias=False,
|
| 173 |
+
proximal_init=False,
|
| 174 |
+
):
|
| 175 |
+
super().__init__()
|
| 176 |
+
assert channels % n_heads == 0
|
| 177 |
+
|
| 178 |
+
self.channels = channels
|
| 179 |
+
self.out_channels = out_channels
|
| 180 |
+
self.n_heads = n_heads
|
| 181 |
+
self.p_dropout = p_dropout
|
| 182 |
+
self.window_size = window_size
|
| 183 |
+
self.heads_share = heads_share
|
| 184 |
+
self.block_length = block_length
|
| 185 |
+
self.proximal_bias = proximal_bias
|
| 186 |
+
self.proximal_init = proximal_init
|
| 187 |
+
self.attn = None
|
| 188 |
+
|
| 189 |
+
self.k_channels = channels // n_heads
|
| 190 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
| 191 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
| 192 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
| 193 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
| 194 |
+
self.drop = nn.Dropout(p_dropout)
|
| 195 |
+
|
| 196 |
+
if window_size is not None:
|
| 197 |
+
n_heads_rel = 1 if heads_share else n_heads
|
| 198 |
+
rel_stddev = self.k_channels**-0.5
|
| 199 |
+
self.emb_rel_k = nn.Parameter(
|
| 200 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 201 |
+
* rel_stddev
|
| 202 |
+
)
|
| 203 |
+
self.emb_rel_v = nn.Parameter(
|
| 204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 205 |
+
* rel_stddev
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
| 209 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
| 210 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
| 211 |
+
if proximal_init:
|
| 212 |
+
with torch.no_grad():
|
| 213 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
| 214 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
| 215 |
+
|
| 216 |
+
def forward(self, x, c, attn_mask=None):
|
| 217 |
+
q = self.conv_q(x)
|
| 218 |
+
k = self.conv_k(c)
|
| 219 |
+
v = self.conv_v(c)
|
| 220 |
+
|
| 221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
| 222 |
+
|
| 223 |
+
x = self.conv_o(x)
|
| 224 |
+
return x
|
| 225 |
+
|
| 226 |
+
def attention(self, query, key, value, mask=None):
|
| 227 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
| 228 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
| 229 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
| 230 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 231 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 232 |
+
|
| 233 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
| 234 |
+
if self.window_size is not None:
|
| 235 |
+
assert (
|
| 236 |
+
t_s == t_t
|
| 237 |
+
), "Relative attention is only available for self-attention."
|
| 238 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
| 239 |
+
rel_logits = self._matmul_with_relative_keys(
|
| 240 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
| 241 |
+
)
|
| 242 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
| 243 |
+
scores = scores + scores_local
|
| 244 |
+
if self.proximal_bias:
|
| 245 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
| 246 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
| 247 |
+
device=scores.device, dtype=scores.dtype
|
| 248 |
+
)
|
| 249 |
+
if mask is not None:
|
| 250 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
| 251 |
+
if self.block_length is not None:
|
| 252 |
+
assert (
|
| 253 |
+
t_s == t_t
|
| 254 |
+
), "Local attention is only available for self-attention."
|
| 255 |
+
block_mask = (
|
| 256 |
+
torch.ones_like(scores)
|
| 257 |
+
.triu(-self.block_length)
|
| 258 |
+
.tril(self.block_length)
|
| 259 |
+
)
|
| 260 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
| 261 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
| 262 |
+
p_attn = self.drop(p_attn)
|
| 263 |
+
output = torch.matmul(p_attn, value)
|
| 264 |
+
if self.window_size is not None:
|
| 265 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
| 266 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
| 267 |
+
self.emb_rel_v, t_s
|
| 268 |
+
)
|
| 269 |
+
output = output + self._matmul_with_relative_values(
|
| 270 |
+
relative_weights, value_relative_embeddings
|
| 271 |
+
)
|
| 272 |
+
output = (
|
| 273 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
| 274 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
| 275 |
+
return output, p_attn
|
| 276 |
+
|
| 277 |
+
def _matmul_with_relative_values(self, x, y):
|
| 278 |
+
"""
|
| 279 |
+
x: [b, h, l, m]
|
| 280 |
+
y: [h or 1, m, d]
|
| 281 |
+
ret: [b, h, l, d]
|
| 282 |
+
"""
|
| 283 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
| 284 |
+
return ret
|
| 285 |
+
|
| 286 |
+
def _matmul_with_relative_keys(self, x, y):
|
| 287 |
+
"""
|
| 288 |
+
x: [b, h, l, d]
|
| 289 |
+
y: [h or 1, m, d]
|
| 290 |
+
ret: [b, h, l, m]
|
| 291 |
+
"""
|
| 292 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
| 293 |
+
return ret
|
| 294 |
+
|
| 295 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
| 296 |
+
max_relative_position = 2 * self.window_size + 1
|
| 297 |
+
# Pad first before slice to avoid using cond ops.
|
| 298 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
| 299 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
| 300 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
| 301 |
+
if pad_length > 0:
|
| 302 |
+
padded_relative_embeddings = F.pad(
|
| 303 |
+
relative_embeddings,
|
| 304 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
| 305 |
+
)
|
| 306 |
+
else:
|
| 307 |
+
padded_relative_embeddings = relative_embeddings
|
| 308 |
+
used_relative_embeddings = padded_relative_embeddings[
|
| 309 |
+
:, slice_start_position:slice_end_position
|
| 310 |
+
]
|
| 311 |
+
return used_relative_embeddings
|
| 312 |
+
|
| 313 |
+
def _relative_position_to_absolute_position(self, x):
|
| 314 |
+
"""
|
| 315 |
+
x: [b, h, l, 2*l-1]
|
| 316 |
+
ret: [b, h, l, l]
|
| 317 |
+
"""
|
| 318 |
+
batch, heads, length, _ = x.size()
|
| 319 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
| 320 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
| 321 |
+
|
| 322 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
| 323 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
| 324 |
+
x_flat = F.pad(
|
| 325 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
# Reshape and slice out the padded elements.
|
| 329 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
| 330 |
+
:, :, :length, length - 1 :
|
| 331 |
+
]
|
| 332 |
+
return x_final
|
| 333 |
+
|
| 334 |
+
def _absolute_position_to_relative_position(self, x):
|
| 335 |
+
"""
|
| 336 |
+
x: [b, h, l, l]
|
| 337 |
+
ret: [b, h, l, 2*l-1]
|
| 338 |
+
"""
|
| 339 |
+
batch, heads, length, _ = x.size()
|
| 340 |
+
# padd along column
|
| 341 |
+
x = F.pad(
|
| 342 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
| 343 |
+
)
|
| 344 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
| 345 |
+
# add 0's in the beginning that will skew the elements after reshape
|
| 346 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
| 347 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
| 348 |
+
return x_final
|
| 349 |
+
|
| 350 |
+
def _attention_bias_proximal(self, length):
|
| 351 |
+
"""Bias for self-attention to encourage attention to close positions.
|
| 352 |
+
Args:
|
| 353 |
+
length: an integer scalar.
|
| 354 |
+
Returns:
|
| 355 |
+
a Tensor with shape [1, 1, length, length]
|
| 356 |
+
"""
|
| 357 |
+
r = torch.arange(length, dtype=torch.float32)
|
| 358 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
| 359 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class FFN(nn.Module):
|
| 363 |
+
def __init__(
|
| 364 |
+
self,
|
| 365 |
+
in_channels,
|
| 366 |
+
out_channels,
|
| 367 |
+
filter_channels,
|
| 368 |
+
kernel_size,
|
| 369 |
+
p_dropout=0.0,
|
| 370 |
+
activation=None,
|
| 371 |
+
causal=False,
|
| 372 |
+
):
|
| 373 |
+
super().__init__()
|
| 374 |
+
self.in_channels = in_channels
|
| 375 |
+
self.out_channels = out_channels
|
| 376 |
+
self.filter_channels = filter_channels
|
| 377 |
+
self.kernel_size = kernel_size
|
| 378 |
+
self.p_dropout = p_dropout
|
| 379 |
+
self.activation = activation
|
| 380 |
+
self.causal = causal
|
| 381 |
+
|
| 382 |
+
if causal:
|
| 383 |
+
self.padding = self._causal_padding
|
| 384 |
+
else:
|
| 385 |
+
self.padding = self._same_padding
|
| 386 |
+
|
| 387 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
| 388 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
| 389 |
+
self.drop = nn.Dropout(p_dropout)
|
| 390 |
+
|
| 391 |
+
def forward(self, x, x_mask):
|
| 392 |
+
x = self.conv_1(self.padding(x * x_mask))
|
| 393 |
+
if self.activation == "gelu":
|
| 394 |
+
x = x * torch.sigmoid(1.702 * x)
|
| 395 |
+
else:
|
| 396 |
+
x = torch.relu(x)
|
| 397 |
+
x = self.drop(x)
|
| 398 |
+
x = self.conv_2(self.padding(x * x_mask))
|
| 399 |
+
return x * x_mask
|
| 400 |
+
|
| 401 |
+
def _causal_padding(self, x):
|
| 402 |
+
if self.kernel_size == 1:
|
| 403 |
+
return x
|
| 404 |
+
pad_l = self.kernel_size - 1
|
| 405 |
+
pad_r = 0
|
| 406 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 407 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 408 |
+
return x
|
| 409 |
+
|
| 410 |
+
def _same_padding(self, x):
|
| 411 |
+
if self.kernel_size == 1:
|
| 412 |
+
return x
|
| 413 |
+
pad_l = (self.kernel_size - 1) // 2
|
| 414 |
+
pad_r = self.kernel_size // 2
|
| 415 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 416 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 417 |
+
return x
|
infer_pack/commons.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 9 |
+
classname = m.__class__.__name__
|
| 10 |
+
if classname.find("Conv") != -1:
|
| 11 |
+
m.weight.data.normal_(mean, std)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def get_padding(kernel_size, dilation=1):
|
| 15 |
+
return int((kernel_size * dilation - dilation) / 2)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def convert_pad_shape(pad_shape):
|
| 19 |
+
l = pad_shape[::-1]
|
| 20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 21 |
+
return pad_shape
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
| 25 |
+
"""KL(P||Q)"""
|
| 26 |
+
kl = (logs_q - logs_p) - 0.5
|
| 27 |
+
kl += (
|
| 28 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
| 29 |
+
)
|
| 30 |
+
return kl
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def rand_gumbel(shape):
|
| 34 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
| 35 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
| 36 |
+
return -torch.log(-torch.log(uniform_samples))
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def rand_gumbel_like(x):
|
| 40 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
| 41 |
+
return g
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def slice_segments(x, ids_str, segment_size=4):
|
| 45 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
| 46 |
+
for i in range(x.size(0)):
|
| 47 |
+
idx_str = ids_str[i]
|
| 48 |
+
idx_end = idx_str + segment_size
|
| 49 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
| 50 |
+
return ret
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
| 54 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
| 55 |
+
for i in range(x.size(0)):
|
| 56 |
+
idx_str = ids_str[i]
|
| 57 |
+
idx_end = idx_str + segment_size
|
| 58 |
+
ret[i] = x[i, idx_str:idx_end]
|
| 59 |
+
return ret
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
| 63 |
+
b, d, t = x.size()
|
| 64 |
+
if x_lengths is None:
|
| 65 |
+
x_lengths = t
|
| 66 |
+
ids_str_max = x_lengths - segment_size + 1
|
| 67 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
| 68 |
+
ret = slice_segments(x, ids_str, segment_size)
|
| 69 |
+
return ret, ids_str
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
| 73 |
+
position = torch.arange(length, dtype=torch.float)
|
| 74 |
+
num_timescales = channels // 2
|
| 75 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
| 76 |
+
num_timescales - 1
|
| 77 |
+
)
|
| 78 |
+
inv_timescales = min_timescale * torch.exp(
|
| 79 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
| 80 |
+
)
|
| 81 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
| 82 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
| 83 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
| 84 |
+
signal = signal.view(1, channels, length)
|
| 85 |
+
return signal
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
| 89 |
+
b, channels, length = x.size()
|
| 90 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 91 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
| 95 |
+
b, channels, length = x.size()
|
| 96 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
| 97 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def subsequent_mask(length):
|
| 101 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
| 102 |
+
return mask
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
@torch.jit.script
|
| 106 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
| 107 |
+
n_channels_int = n_channels[0]
|
| 108 |
+
in_act = input_a + input_b
|
| 109 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
| 110 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
| 111 |
+
acts = t_act * s_act
|
| 112 |
+
return acts
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def convert_pad_shape(pad_shape):
|
| 116 |
+
l = pad_shape[::-1]
|
| 117 |
+
pad_shape = [item for sublist in l for item in sublist]
|
| 118 |
+
return pad_shape
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def shift_1d(x):
|
| 122 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
| 123 |
+
return x
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def sequence_mask(length, max_length=None):
|
| 127 |
+
if max_length is None:
|
| 128 |
+
max_length = length.max()
|
| 129 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
| 130 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def generate_path(duration, mask):
|
| 134 |
+
"""
|
| 135 |
+
duration: [b, 1, t_x]
|
| 136 |
+
mask: [b, 1, t_y, t_x]
|
| 137 |
+
"""
|
| 138 |
+
device = duration.device
|
| 139 |
+
|
| 140 |
+
b, _, t_y, t_x = mask.shape
|
| 141 |
+
cum_duration = torch.cumsum(duration, -1)
|
| 142 |
+
|
| 143 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
| 144 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
| 145 |
+
path = path.view(b, t_x, t_y)
|
| 146 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
| 147 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
| 148 |
+
return path
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
| 152 |
+
if isinstance(parameters, torch.Tensor):
|
| 153 |
+
parameters = [parameters]
|
| 154 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
| 155 |
+
norm_type = float(norm_type)
|
| 156 |
+
if clip_value is not None:
|
| 157 |
+
clip_value = float(clip_value)
|
| 158 |
+
|
| 159 |
+
total_norm = 0
|
| 160 |
+
for p in parameters:
|
| 161 |
+
param_norm = p.grad.data.norm(norm_type)
|
| 162 |
+
total_norm += param_norm.item() ** norm_type
|
| 163 |
+
if clip_value is not None:
|
| 164 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
| 165 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
| 166 |
+
return total_norm
|
infer_pack/models.py
ADDED
|
@@ -0,0 +1,1116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math, pdb, os
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from infer_pack import modules
|
| 7 |
+
from infer_pack import attentions
|
| 8 |
+
from infer_pack import commons
|
| 9 |
+
from infer_pack.commons import init_weights, get_padding
|
| 10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 12 |
+
from infer_pack.commons import init_weights
|
| 13 |
+
import numpy as np
|
| 14 |
+
from infer_pack import commons
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class TextEncoder256(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
out_channels,
|
| 21 |
+
hidden_channels,
|
| 22 |
+
filter_channels,
|
| 23 |
+
n_heads,
|
| 24 |
+
n_layers,
|
| 25 |
+
kernel_size,
|
| 26 |
+
p_dropout,
|
| 27 |
+
f0=True,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.out_channels = out_channels
|
| 31 |
+
self.hidden_channels = hidden_channels
|
| 32 |
+
self.filter_channels = filter_channels
|
| 33 |
+
self.n_heads = n_heads
|
| 34 |
+
self.n_layers = n_layers
|
| 35 |
+
self.kernel_size = kernel_size
|
| 36 |
+
self.p_dropout = p_dropout
|
| 37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
| 38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 39 |
+
if f0 == True:
|
| 40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 41 |
+
self.encoder = attentions.Encoder(
|
| 42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 43 |
+
)
|
| 44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 45 |
+
|
| 46 |
+
def forward(self, phone, pitch, lengths):
|
| 47 |
+
if pitch == None:
|
| 48 |
+
x = self.emb_phone(phone)
|
| 49 |
+
else:
|
| 50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 52 |
+
x = self.lrelu(x)
|
| 53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 55 |
+
x.dtype
|
| 56 |
+
)
|
| 57 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 58 |
+
stats = self.proj(x) * x_mask
|
| 59 |
+
|
| 60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 61 |
+
return m, logs, x_mask
|
| 62 |
+
class TextEncoder768(nn.Module):
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
out_channels,
|
| 66 |
+
hidden_channels,
|
| 67 |
+
filter_channels,
|
| 68 |
+
n_heads,
|
| 69 |
+
n_layers,
|
| 70 |
+
kernel_size,
|
| 71 |
+
p_dropout,
|
| 72 |
+
f0=True,
|
| 73 |
+
):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.out_channels = out_channels
|
| 76 |
+
self.hidden_channels = hidden_channels
|
| 77 |
+
self.filter_channels = filter_channels
|
| 78 |
+
self.n_heads = n_heads
|
| 79 |
+
self.n_layers = n_layers
|
| 80 |
+
self.kernel_size = kernel_size
|
| 81 |
+
self.p_dropout = p_dropout
|
| 82 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
| 83 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 84 |
+
if f0 == True:
|
| 85 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 86 |
+
self.encoder = attentions.Encoder(
|
| 87 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 88 |
+
)
|
| 89 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 90 |
+
|
| 91 |
+
def forward(self, phone, pitch, lengths):
|
| 92 |
+
if pitch == None:
|
| 93 |
+
x = self.emb_phone(phone)
|
| 94 |
+
else:
|
| 95 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 96 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 97 |
+
x = self.lrelu(x)
|
| 98 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 99 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 100 |
+
x.dtype
|
| 101 |
+
)
|
| 102 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 103 |
+
stats = self.proj(x) * x_mask
|
| 104 |
+
|
| 105 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 106 |
+
return m, logs, x_mask
|
| 107 |
+
|
| 108 |
+
class ResidualCouplingBlock(nn.Module):
|
| 109 |
+
def __init__(
|
| 110 |
+
self,
|
| 111 |
+
channels,
|
| 112 |
+
hidden_channels,
|
| 113 |
+
kernel_size,
|
| 114 |
+
dilation_rate,
|
| 115 |
+
n_layers,
|
| 116 |
+
n_flows=4,
|
| 117 |
+
gin_channels=0,
|
| 118 |
+
):
|
| 119 |
+
super().__init__()
|
| 120 |
+
self.channels = channels
|
| 121 |
+
self.hidden_channels = hidden_channels
|
| 122 |
+
self.kernel_size = kernel_size
|
| 123 |
+
self.dilation_rate = dilation_rate
|
| 124 |
+
self.n_layers = n_layers
|
| 125 |
+
self.n_flows = n_flows
|
| 126 |
+
self.gin_channels = gin_channels
|
| 127 |
+
|
| 128 |
+
self.flows = nn.ModuleList()
|
| 129 |
+
for i in range(n_flows):
|
| 130 |
+
self.flows.append(
|
| 131 |
+
modules.ResidualCouplingLayer(
|
| 132 |
+
channels,
|
| 133 |
+
hidden_channels,
|
| 134 |
+
kernel_size,
|
| 135 |
+
dilation_rate,
|
| 136 |
+
n_layers,
|
| 137 |
+
gin_channels=gin_channels,
|
| 138 |
+
mean_only=True,
|
| 139 |
+
)
|
| 140 |
+
)
|
| 141 |
+
self.flows.append(modules.Flip())
|
| 142 |
+
|
| 143 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 144 |
+
if not reverse:
|
| 145 |
+
for flow in self.flows:
|
| 146 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 147 |
+
else:
|
| 148 |
+
for flow in reversed(self.flows):
|
| 149 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 150 |
+
return x
|
| 151 |
+
|
| 152 |
+
def remove_weight_norm(self):
|
| 153 |
+
for i in range(self.n_flows):
|
| 154 |
+
self.flows[i * 2].remove_weight_norm()
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class PosteriorEncoder(nn.Module):
|
| 158 |
+
def __init__(
|
| 159 |
+
self,
|
| 160 |
+
in_channels,
|
| 161 |
+
out_channels,
|
| 162 |
+
hidden_channels,
|
| 163 |
+
kernel_size,
|
| 164 |
+
dilation_rate,
|
| 165 |
+
n_layers,
|
| 166 |
+
gin_channels=0,
|
| 167 |
+
):
|
| 168 |
+
super().__init__()
|
| 169 |
+
self.in_channels = in_channels
|
| 170 |
+
self.out_channels = out_channels
|
| 171 |
+
self.hidden_channels = hidden_channels
|
| 172 |
+
self.kernel_size = kernel_size
|
| 173 |
+
self.dilation_rate = dilation_rate
|
| 174 |
+
self.n_layers = n_layers
|
| 175 |
+
self.gin_channels = gin_channels
|
| 176 |
+
|
| 177 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 178 |
+
self.enc = modules.WN(
|
| 179 |
+
hidden_channels,
|
| 180 |
+
kernel_size,
|
| 181 |
+
dilation_rate,
|
| 182 |
+
n_layers,
|
| 183 |
+
gin_channels=gin_channels,
|
| 184 |
+
)
|
| 185 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 186 |
+
|
| 187 |
+
def forward(self, x, x_lengths, g=None):
|
| 188 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 189 |
+
x.dtype
|
| 190 |
+
)
|
| 191 |
+
x = self.pre(x) * x_mask
|
| 192 |
+
x = self.enc(x, x_mask, g=g)
|
| 193 |
+
stats = self.proj(x) * x_mask
|
| 194 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 195 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 196 |
+
return z, m, logs, x_mask
|
| 197 |
+
|
| 198 |
+
def remove_weight_norm(self):
|
| 199 |
+
self.enc.remove_weight_norm()
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
class Generator(torch.nn.Module):
|
| 203 |
+
def __init__(
|
| 204 |
+
self,
|
| 205 |
+
initial_channel,
|
| 206 |
+
resblock,
|
| 207 |
+
resblock_kernel_sizes,
|
| 208 |
+
resblock_dilation_sizes,
|
| 209 |
+
upsample_rates,
|
| 210 |
+
upsample_initial_channel,
|
| 211 |
+
upsample_kernel_sizes,
|
| 212 |
+
gin_channels=0,
|
| 213 |
+
):
|
| 214 |
+
super(Generator, self).__init__()
|
| 215 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 216 |
+
self.num_upsamples = len(upsample_rates)
|
| 217 |
+
self.conv_pre = Conv1d(
|
| 218 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 219 |
+
)
|
| 220 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 221 |
+
|
| 222 |
+
self.ups = nn.ModuleList()
|
| 223 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 224 |
+
self.ups.append(
|
| 225 |
+
weight_norm(
|
| 226 |
+
ConvTranspose1d(
|
| 227 |
+
upsample_initial_channel // (2**i),
|
| 228 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 229 |
+
k,
|
| 230 |
+
u,
|
| 231 |
+
padding=(k - u) // 2,
|
| 232 |
+
)
|
| 233 |
+
)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
self.resblocks = nn.ModuleList()
|
| 237 |
+
for i in range(len(self.ups)):
|
| 238 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 239 |
+
for j, (k, d) in enumerate(
|
| 240 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 241 |
+
):
|
| 242 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 243 |
+
|
| 244 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 245 |
+
self.ups.apply(init_weights)
|
| 246 |
+
|
| 247 |
+
if gin_channels != 0:
|
| 248 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 249 |
+
|
| 250 |
+
def forward(self, x, g=None):
|
| 251 |
+
x = self.conv_pre(x)
|
| 252 |
+
if g is not None:
|
| 253 |
+
x = x + self.cond(g)
|
| 254 |
+
|
| 255 |
+
for i in range(self.num_upsamples):
|
| 256 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 257 |
+
x = self.ups[i](x)
|
| 258 |
+
xs = None
|
| 259 |
+
for j in range(self.num_kernels):
|
| 260 |
+
if xs is None:
|
| 261 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 262 |
+
else:
|
| 263 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 264 |
+
x = xs / self.num_kernels
|
| 265 |
+
x = F.leaky_relu(x)
|
| 266 |
+
x = self.conv_post(x)
|
| 267 |
+
x = torch.tanh(x)
|
| 268 |
+
|
| 269 |
+
return x
|
| 270 |
+
|
| 271 |
+
def remove_weight_norm(self):
|
| 272 |
+
for l in self.ups:
|
| 273 |
+
remove_weight_norm(l)
|
| 274 |
+
for l in self.resblocks:
|
| 275 |
+
l.remove_weight_norm()
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class SineGen(torch.nn.Module):
|
| 279 |
+
"""Definition of sine generator
|
| 280 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 281 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 282 |
+
voiced_threshold = 0,
|
| 283 |
+
flag_for_pulse=False)
|
| 284 |
+
samp_rate: sampling rate in Hz
|
| 285 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 286 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 287 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 288 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 289 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 290 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 291 |
+
segment is always sin(np.pi) or cos(0)
|
| 292 |
+
"""
|
| 293 |
+
|
| 294 |
+
def __init__(
|
| 295 |
+
self,
|
| 296 |
+
samp_rate,
|
| 297 |
+
harmonic_num=0,
|
| 298 |
+
sine_amp=0.1,
|
| 299 |
+
noise_std=0.003,
|
| 300 |
+
voiced_threshold=0,
|
| 301 |
+
flag_for_pulse=False,
|
| 302 |
+
):
|
| 303 |
+
super(SineGen, self).__init__()
|
| 304 |
+
self.sine_amp = sine_amp
|
| 305 |
+
self.noise_std = noise_std
|
| 306 |
+
self.harmonic_num = harmonic_num
|
| 307 |
+
self.dim = self.harmonic_num + 1
|
| 308 |
+
self.sampling_rate = samp_rate
|
| 309 |
+
self.voiced_threshold = voiced_threshold
|
| 310 |
+
|
| 311 |
+
def _f02uv(self, f0):
|
| 312 |
+
# generate uv signal
|
| 313 |
+
uv = torch.ones_like(f0)
|
| 314 |
+
uv = uv * (f0 > self.voiced_threshold)
|
| 315 |
+
return uv
|
| 316 |
+
|
| 317 |
+
def forward(self, f0, upp):
|
| 318 |
+
"""sine_tensor, uv = forward(f0)
|
| 319 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 320 |
+
f0 for unvoiced steps should be 0
|
| 321 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 322 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 323 |
+
"""
|
| 324 |
+
with torch.no_grad():
|
| 325 |
+
f0 = f0[:, None].transpose(1, 2)
|
| 326 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
| 327 |
+
# fundamental component
|
| 328 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
| 329 |
+
for idx in np.arange(self.harmonic_num):
|
| 330 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
| 331 |
+
idx + 2
|
| 332 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
| 333 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
| 334 |
+
rand_ini = torch.rand(
|
| 335 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
| 336 |
+
)
|
| 337 |
+
rand_ini[:, 0] = 0
|
| 338 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 339 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
| 340 |
+
tmp_over_one *= upp
|
| 341 |
+
tmp_over_one = F.interpolate(
|
| 342 |
+
tmp_over_one.transpose(2, 1),
|
| 343 |
+
scale_factor=upp,
|
| 344 |
+
mode="linear",
|
| 345 |
+
align_corners=True,
|
| 346 |
+
).transpose(2, 1)
|
| 347 |
+
rad_values = F.interpolate(
|
| 348 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 349 |
+
).transpose(
|
| 350 |
+
2, 1
|
| 351 |
+
) #######
|
| 352 |
+
tmp_over_one %= 1
|
| 353 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
| 354 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
| 355 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 356 |
+
sine_waves = torch.sin(
|
| 357 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
| 358 |
+
)
|
| 359 |
+
sine_waves = sine_waves * self.sine_amp
|
| 360 |
+
uv = self._f02uv(f0)
|
| 361 |
+
uv = F.interpolate(
|
| 362 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 363 |
+
).transpose(2, 1)
|
| 364 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 365 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 366 |
+
sine_waves = sine_waves * uv + noise
|
| 367 |
+
return sine_waves, uv, noise
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 371 |
+
"""SourceModule for hn-nsf
|
| 372 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 373 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 374 |
+
sampling_rate: sampling_rate in Hz
|
| 375 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 376 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 377 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 378 |
+
note that amplitude of noise in unvoiced is decided
|
| 379 |
+
by sine_amp
|
| 380 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 381 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 382 |
+
F0_sampled (batchsize, length, 1)
|
| 383 |
+
Sine_source (batchsize, length, 1)
|
| 384 |
+
noise_source (batchsize, length 1)
|
| 385 |
+
uv (batchsize, length, 1)
|
| 386 |
+
"""
|
| 387 |
+
|
| 388 |
+
def __init__(
|
| 389 |
+
self,
|
| 390 |
+
sampling_rate,
|
| 391 |
+
harmonic_num=0,
|
| 392 |
+
sine_amp=0.1,
|
| 393 |
+
add_noise_std=0.003,
|
| 394 |
+
voiced_threshod=0,
|
| 395 |
+
is_half=True,
|
| 396 |
+
):
|
| 397 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 398 |
+
|
| 399 |
+
self.sine_amp = sine_amp
|
| 400 |
+
self.noise_std = add_noise_std
|
| 401 |
+
self.is_half = is_half
|
| 402 |
+
# to produce sine waveforms
|
| 403 |
+
self.l_sin_gen = SineGen(
|
| 404 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
# to merge source harmonics into a single excitation
|
| 408 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 409 |
+
self.l_tanh = torch.nn.Tanh()
|
| 410 |
+
|
| 411 |
+
def forward(self, x, upp=None):
|
| 412 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
| 413 |
+
if self.is_half:
|
| 414 |
+
sine_wavs = sine_wavs.half()
|
| 415 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 416 |
+
return sine_merge, None, None # noise, uv
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
class GeneratorNSF(torch.nn.Module):
|
| 420 |
+
def __init__(
|
| 421 |
+
self,
|
| 422 |
+
initial_channel,
|
| 423 |
+
resblock,
|
| 424 |
+
resblock_kernel_sizes,
|
| 425 |
+
resblock_dilation_sizes,
|
| 426 |
+
upsample_rates,
|
| 427 |
+
upsample_initial_channel,
|
| 428 |
+
upsample_kernel_sizes,
|
| 429 |
+
gin_channels,
|
| 430 |
+
sr,
|
| 431 |
+
is_half=False,
|
| 432 |
+
):
|
| 433 |
+
super(GeneratorNSF, self).__init__()
|
| 434 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 435 |
+
self.num_upsamples = len(upsample_rates)
|
| 436 |
+
|
| 437 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 438 |
+
self.m_source = SourceModuleHnNSF(
|
| 439 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
| 440 |
+
)
|
| 441 |
+
self.noise_convs = nn.ModuleList()
|
| 442 |
+
self.conv_pre = Conv1d(
|
| 443 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 444 |
+
)
|
| 445 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 446 |
+
|
| 447 |
+
self.ups = nn.ModuleList()
|
| 448 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 449 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 450 |
+
self.ups.append(
|
| 451 |
+
weight_norm(
|
| 452 |
+
ConvTranspose1d(
|
| 453 |
+
upsample_initial_channel // (2**i),
|
| 454 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 455 |
+
k,
|
| 456 |
+
u,
|
| 457 |
+
padding=(k - u) // 2,
|
| 458 |
+
)
|
| 459 |
+
)
|
| 460 |
+
)
|
| 461 |
+
if i + 1 < len(upsample_rates):
|
| 462 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
| 463 |
+
self.noise_convs.append(
|
| 464 |
+
Conv1d(
|
| 465 |
+
1,
|
| 466 |
+
c_cur,
|
| 467 |
+
kernel_size=stride_f0 * 2,
|
| 468 |
+
stride=stride_f0,
|
| 469 |
+
padding=stride_f0 // 2,
|
| 470 |
+
)
|
| 471 |
+
)
|
| 472 |
+
else:
|
| 473 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 474 |
+
|
| 475 |
+
self.resblocks = nn.ModuleList()
|
| 476 |
+
for i in range(len(self.ups)):
|
| 477 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 478 |
+
for j, (k, d) in enumerate(
|
| 479 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 480 |
+
):
|
| 481 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 482 |
+
|
| 483 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 484 |
+
self.ups.apply(init_weights)
|
| 485 |
+
|
| 486 |
+
if gin_channels != 0:
|
| 487 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 488 |
+
|
| 489 |
+
self.upp = np.prod(upsample_rates)
|
| 490 |
+
|
| 491 |
+
def forward(self, x, f0, g=None):
|
| 492 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
| 493 |
+
har_source = har_source.transpose(1, 2)
|
| 494 |
+
x = self.conv_pre(x)
|
| 495 |
+
if g is not None:
|
| 496 |
+
x = x + self.cond(g)
|
| 497 |
+
|
| 498 |
+
for i in range(self.num_upsamples):
|
| 499 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 500 |
+
x = self.ups[i](x)
|
| 501 |
+
x_source = self.noise_convs[i](har_source)
|
| 502 |
+
x = x + x_source
|
| 503 |
+
xs = None
|
| 504 |
+
for j in range(self.num_kernels):
|
| 505 |
+
if xs is None:
|
| 506 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 507 |
+
else:
|
| 508 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 509 |
+
x = xs / self.num_kernels
|
| 510 |
+
x = F.leaky_relu(x)
|
| 511 |
+
x = self.conv_post(x)
|
| 512 |
+
x = torch.tanh(x)
|
| 513 |
+
return x
|
| 514 |
+
|
| 515 |
+
def remove_weight_norm(self):
|
| 516 |
+
for l in self.ups:
|
| 517 |
+
remove_weight_norm(l)
|
| 518 |
+
for l in self.resblocks:
|
| 519 |
+
l.remove_weight_norm()
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
sr2sr = {
|
| 523 |
+
"32k": 32000,
|
| 524 |
+
"40k": 40000,
|
| 525 |
+
"48k": 48000,
|
| 526 |
+
}
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
| 530 |
+
def __init__(
|
| 531 |
+
self,
|
| 532 |
+
spec_channels,
|
| 533 |
+
segment_size,
|
| 534 |
+
inter_channels,
|
| 535 |
+
hidden_channels,
|
| 536 |
+
filter_channels,
|
| 537 |
+
n_heads,
|
| 538 |
+
n_layers,
|
| 539 |
+
kernel_size,
|
| 540 |
+
p_dropout,
|
| 541 |
+
resblock,
|
| 542 |
+
resblock_kernel_sizes,
|
| 543 |
+
resblock_dilation_sizes,
|
| 544 |
+
upsample_rates,
|
| 545 |
+
upsample_initial_channel,
|
| 546 |
+
upsample_kernel_sizes,
|
| 547 |
+
spk_embed_dim,
|
| 548 |
+
gin_channels,
|
| 549 |
+
sr,
|
| 550 |
+
**kwargs
|
| 551 |
+
):
|
| 552 |
+
super().__init__()
|
| 553 |
+
if type(sr) == type("strr"):
|
| 554 |
+
sr = sr2sr[sr]
|
| 555 |
+
self.spec_channels = spec_channels
|
| 556 |
+
self.inter_channels = inter_channels
|
| 557 |
+
self.hidden_channels = hidden_channels
|
| 558 |
+
self.filter_channels = filter_channels
|
| 559 |
+
self.n_heads = n_heads
|
| 560 |
+
self.n_layers = n_layers
|
| 561 |
+
self.kernel_size = kernel_size
|
| 562 |
+
self.p_dropout = p_dropout
|
| 563 |
+
self.resblock = resblock
|
| 564 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 565 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 566 |
+
self.upsample_rates = upsample_rates
|
| 567 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 568 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 569 |
+
self.segment_size = segment_size
|
| 570 |
+
self.gin_channels = gin_channels
|
| 571 |
+
# self.hop_length = hop_length#
|
| 572 |
+
self.spk_embed_dim = spk_embed_dim
|
| 573 |
+
self.enc_p = TextEncoder256(
|
| 574 |
+
inter_channels,
|
| 575 |
+
hidden_channels,
|
| 576 |
+
filter_channels,
|
| 577 |
+
n_heads,
|
| 578 |
+
n_layers,
|
| 579 |
+
kernel_size,
|
| 580 |
+
p_dropout,
|
| 581 |
+
)
|
| 582 |
+
self.dec = GeneratorNSF(
|
| 583 |
+
inter_channels,
|
| 584 |
+
resblock,
|
| 585 |
+
resblock_kernel_sizes,
|
| 586 |
+
resblock_dilation_sizes,
|
| 587 |
+
upsample_rates,
|
| 588 |
+
upsample_initial_channel,
|
| 589 |
+
upsample_kernel_sizes,
|
| 590 |
+
gin_channels=gin_channels,
|
| 591 |
+
sr=sr,
|
| 592 |
+
is_half=kwargs["is_half"],
|
| 593 |
+
)
|
| 594 |
+
self.enc_q = PosteriorEncoder(
|
| 595 |
+
spec_channels,
|
| 596 |
+
inter_channels,
|
| 597 |
+
hidden_channels,
|
| 598 |
+
5,
|
| 599 |
+
1,
|
| 600 |
+
16,
|
| 601 |
+
gin_channels=gin_channels,
|
| 602 |
+
)
|
| 603 |
+
self.flow = ResidualCouplingBlock(
|
| 604 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 605 |
+
)
|
| 606 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 607 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 608 |
+
|
| 609 |
+
def remove_weight_norm(self):
|
| 610 |
+
self.dec.remove_weight_norm()
|
| 611 |
+
self.flow.remove_weight_norm()
|
| 612 |
+
self.enc_q.remove_weight_norm()
|
| 613 |
+
|
| 614 |
+
def forward(
|
| 615 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
| 616 |
+
): # 这里ds是id,[bs,1]
|
| 617 |
+
# print(1,pitch.shape)#[bs,t]
|
| 618 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 619 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 620 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 621 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 622 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 623 |
+
z, y_lengths, self.segment_size
|
| 624 |
+
)
|
| 625 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
| 626 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
| 627 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
| 628 |
+
o = self.dec(z_slice, pitchf, g=g)
|
| 629 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 630 |
+
|
| 631 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
| 632 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 633 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 634 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 635 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 636 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 637 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 638 |
+
class SynthesizerTrnMs768NSFsid(nn.Module):
|
| 639 |
+
def __init__(
|
| 640 |
+
self,
|
| 641 |
+
spec_channels,
|
| 642 |
+
segment_size,
|
| 643 |
+
inter_channels,
|
| 644 |
+
hidden_channels,
|
| 645 |
+
filter_channels,
|
| 646 |
+
n_heads,
|
| 647 |
+
n_layers,
|
| 648 |
+
kernel_size,
|
| 649 |
+
p_dropout,
|
| 650 |
+
resblock,
|
| 651 |
+
resblock_kernel_sizes,
|
| 652 |
+
resblock_dilation_sizes,
|
| 653 |
+
upsample_rates,
|
| 654 |
+
upsample_initial_channel,
|
| 655 |
+
upsample_kernel_sizes,
|
| 656 |
+
spk_embed_dim,
|
| 657 |
+
gin_channels,
|
| 658 |
+
sr,
|
| 659 |
+
**kwargs
|
| 660 |
+
):
|
| 661 |
+
super().__init__()
|
| 662 |
+
if type(sr) == type("strr"):
|
| 663 |
+
sr = sr2sr[sr]
|
| 664 |
+
self.spec_channels = spec_channels
|
| 665 |
+
self.inter_channels = inter_channels
|
| 666 |
+
self.hidden_channels = hidden_channels
|
| 667 |
+
self.filter_channels = filter_channels
|
| 668 |
+
self.n_heads = n_heads
|
| 669 |
+
self.n_layers = n_layers
|
| 670 |
+
self.kernel_size = kernel_size
|
| 671 |
+
self.p_dropout = p_dropout
|
| 672 |
+
self.resblock = resblock
|
| 673 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 674 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 675 |
+
self.upsample_rates = upsample_rates
|
| 676 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 677 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 678 |
+
self.segment_size = segment_size
|
| 679 |
+
self.gin_channels = gin_channels
|
| 680 |
+
# self.hop_length = hop_length#
|
| 681 |
+
self.spk_embed_dim = spk_embed_dim
|
| 682 |
+
self.enc_p = TextEncoder768(
|
| 683 |
+
inter_channels,
|
| 684 |
+
hidden_channels,
|
| 685 |
+
filter_channels,
|
| 686 |
+
n_heads,
|
| 687 |
+
n_layers,
|
| 688 |
+
kernel_size,
|
| 689 |
+
p_dropout,
|
| 690 |
+
)
|
| 691 |
+
self.dec = GeneratorNSF(
|
| 692 |
+
inter_channels,
|
| 693 |
+
resblock,
|
| 694 |
+
resblock_kernel_sizes,
|
| 695 |
+
resblock_dilation_sizes,
|
| 696 |
+
upsample_rates,
|
| 697 |
+
upsample_initial_channel,
|
| 698 |
+
upsample_kernel_sizes,
|
| 699 |
+
gin_channels=gin_channels,
|
| 700 |
+
sr=sr,
|
| 701 |
+
is_half=kwargs["is_half"],
|
| 702 |
+
)
|
| 703 |
+
self.enc_q = PosteriorEncoder(
|
| 704 |
+
spec_channels,
|
| 705 |
+
inter_channels,
|
| 706 |
+
hidden_channels,
|
| 707 |
+
5,
|
| 708 |
+
1,
|
| 709 |
+
16,
|
| 710 |
+
gin_channels=gin_channels,
|
| 711 |
+
)
|
| 712 |
+
self.flow = ResidualCouplingBlock(
|
| 713 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 714 |
+
)
|
| 715 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 716 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 717 |
+
|
| 718 |
+
def remove_weight_norm(self):
|
| 719 |
+
self.dec.remove_weight_norm()
|
| 720 |
+
self.flow.remove_weight_norm()
|
| 721 |
+
self.enc_q.remove_weight_norm()
|
| 722 |
+
|
| 723 |
+
def forward(
|
| 724 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
| 725 |
+
): # 这里ds是id,[bs,1]
|
| 726 |
+
# print(1,pitch.shape)#[bs,t]
|
| 727 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 728 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 729 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 730 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 731 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 732 |
+
z, y_lengths, self.segment_size
|
| 733 |
+
)
|
| 734 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
| 735 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
| 736 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
| 737 |
+
o = self.dec(z_slice, pitchf, g=g)
|
| 738 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 739 |
+
|
| 740 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
| 741 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 742 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 743 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 744 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 745 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 746 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
| 750 |
+
def __init__(
|
| 751 |
+
self,
|
| 752 |
+
spec_channels,
|
| 753 |
+
segment_size,
|
| 754 |
+
inter_channels,
|
| 755 |
+
hidden_channels,
|
| 756 |
+
filter_channels,
|
| 757 |
+
n_heads,
|
| 758 |
+
n_layers,
|
| 759 |
+
kernel_size,
|
| 760 |
+
p_dropout,
|
| 761 |
+
resblock,
|
| 762 |
+
resblock_kernel_sizes,
|
| 763 |
+
resblock_dilation_sizes,
|
| 764 |
+
upsample_rates,
|
| 765 |
+
upsample_initial_channel,
|
| 766 |
+
upsample_kernel_sizes,
|
| 767 |
+
spk_embed_dim,
|
| 768 |
+
gin_channels,
|
| 769 |
+
sr=None,
|
| 770 |
+
**kwargs
|
| 771 |
+
):
|
| 772 |
+
super().__init__()
|
| 773 |
+
self.spec_channels = spec_channels
|
| 774 |
+
self.inter_channels = inter_channels
|
| 775 |
+
self.hidden_channels = hidden_channels
|
| 776 |
+
self.filter_channels = filter_channels
|
| 777 |
+
self.n_heads = n_heads
|
| 778 |
+
self.n_layers = n_layers
|
| 779 |
+
self.kernel_size = kernel_size
|
| 780 |
+
self.p_dropout = p_dropout
|
| 781 |
+
self.resblock = resblock
|
| 782 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 783 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 784 |
+
self.upsample_rates = upsample_rates
|
| 785 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 786 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 787 |
+
self.segment_size = segment_size
|
| 788 |
+
self.gin_channels = gin_channels
|
| 789 |
+
# self.hop_length = hop_length#
|
| 790 |
+
self.spk_embed_dim = spk_embed_dim
|
| 791 |
+
self.enc_p = TextEncoder256(
|
| 792 |
+
inter_channels,
|
| 793 |
+
hidden_channels,
|
| 794 |
+
filter_channels,
|
| 795 |
+
n_heads,
|
| 796 |
+
n_layers,
|
| 797 |
+
kernel_size,
|
| 798 |
+
p_dropout,
|
| 799 |
+
f0=False,
|
| 800 |
+
)
|
| 801 |
+
self.dec = Generator(
|
| 802 |
+
inter_channels,
|
| 803 |
+
resblock,
|
| 804 |
+
resblock_kernel_sizes,
|
| 805 |
+
resblock_dilation_sizes,
|
| 806 |
+
upsample_rates,
|
| 807 |
+
upsample_initial_channel,
|
| 808 |
+
upsample_kernel_sizes,
|
| 809 |
+
gin_channels=gin_channels,
|
| 810 |
+
)
|
| 811 |
+
self.enc_q = PosteriorEncoder(
|
| 812 |
+
spec_channels,
|
| 813 |
+
inter_channels,
|
| 814 |
+
hidden_channels,
|
| 815 |
+
5,
|
| 816 |
+
1,
|
| 817 |
+
16,
|
| 818 |
+
gin_channels=gin_channels,
|
| 819 |
+
)
|
| 820 |
+
self.flow = ResidualCouplingBlock(
|
| 821 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 822 |
+
)
|
| 823 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 824 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 825 |
+
|
| 826 |
+
def remove_weight_norm(self):
|
| 827 |
+
self.dec.remove_weight_norm()
|
| 828 |
+
self.flow.remove_weight_norm()
|
| 829 |
+
self.enc_q.remove_weight_norm()
|
| 830 |
+
|
| 831 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
| 832 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 833 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 834 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 835 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 836 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 837 |
+
z, y_lengths, self.segment_size
|
| 838 |
+
)
|
| 839 |
+
o = self.dec(z_slice, g=g)
|
| 840 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 841 |
+
|
| 842 |
+
def infer(self, phone, phone_lengths, sid, max_len=None):
|
| 843 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 844 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 845 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 846 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 847 |
+
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
| 848 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 849 |
+
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
| 850 |
+
def __init__(
|
| 851 |
+
self,
|
| 852 |
+
spec_channels,
|
| 853 |
+
segment_size,
|
| 854 |
+
inter_channels,
|
| 855 |
+
hidden_channels,
|
| 856 |
+
filter_channels,
|
| 857 |
+
n_heads,
|
| 858 |
+
n_layers,
|
| 859 |
+
kernel_size,
|
| 860 |
+
p_dropout,
|
| 861 |
+
resblock,
|
| 862 |
+
resblock_kernel_sizes,
|
| 863 |
+
resblock_dilation_sizes,
|
| 864 |
+
upsample_rates,
|
| 865 |
+
upsample_initial_channel,
|
| 866 |
+
upsample_kernel_sizes,
|
| 867 |
+
spk_embed_dim,
|
| 868 |
+
gin_channels,
|
| 869 |
+
sr=None,
|
| 870 |
+
**kwargs
|
| 871 |
+
):
|
| 872 |
+
super().__init__()
|
| 873 |
+
self.spec_channels = spec_channels
|
| 874 |
+
self.inter_channels = inter_channels
|
| 875 |
+
self.hidden_channels = hidden_channels
|
| 876 |
+
self.filter_channels = filter_channels
|
| 877 |
+
self.n_heads = n_heads
|
| 878 |
+
self.n_layers = n_layers
|
| 879 |
+
self.kernel_size = kernel_size
|
| 880 |
+
self.p_dropout = p_dropout
|
| 881 |
+
self.resblock = resblock
|
| 882 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 883 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 884 |
+
self.upsample_rates = upsample_rates
|
| 885 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 886 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 887 |
+
self.segment_size = segment_size
|
| 888 |
+
self.gin_channels = gin_channels
|
| 889 |
+
# self.hop_length = hop_length#
|
| 890 |
+
self.spk_embed_dim = spk_embed_dim
|
| 891 |
+
self.enc_p = TextEncoder768(
|
| 892 |
+
inter_channels,
|
| 893 |
+
hidden_channels,
|
| 894 |
+
filter_channels,
|
| 895 |
+
n_heads,
|
| 896 |
+
n_layers,
|
| 897 |
+
kernel_size,
|
| 898 |
+
p_dropout,
|
| 899 |
+
f0=False,
|
| 900 |
+
)
|
| 901 |
+
self.dec = Generator(
|
| 902 |
+
inter_channels,
|
| 903 |
+
resblock,
|
| 904 |
+
resblock_kernel_sizes,
|
| 905 |
+
resblock_dilation_sizes,
|
| 906 |
+
upsample_rates,
|
| 907 |
+
upsample_initial_channel,
|
| 908 |
+
upsample_kernel_sizes,
|
| 909 |
+
gin_channels=gin_channels,
|
| 910 |
+
)
|
| 911 |
+
self.enc_q = PosteriorEncoder(
|
| 912 |
+
spec_channels,
|
| 913 |
+
inter_channels,
|
| 914 |
+
hidden_channels,
|
| 915 |
+
5,
|
| 916 |
+
1,
|
| 917 |
+
16,
|
| 918 |
+
gin_channels=gin_channels,
|
| 919 |
+
)
|
| 920 |
+
self.flow = ResidualCouplingBlock(
|
| 921 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 922 |
+
)
|
| 923 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 924 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 925 |
+
|
| 926 |
+
def remove_weight_norm(self):
|
| 927 |
+
self.dec.remove_weight_norm()
|
| 928 |
+
self.flow.remove_weight_norm()
|
| 929 |
+
self.enc_q.remove_weight_norm()
|
| 930 |
+
|
| 931 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
| 932 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 933 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 934 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 935 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 936 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 937 |
+
z, y_lengths, self.segment_size
|
| 938 |
+
)
|
| 939 |
+
o = self.dec(z_slice, g=g)
|
| 940 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 941 |
+
|
| 942 |
+
def infer(self, phone, phone_lengths, sid, max_len=None):
|
| 943 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 944 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
| 945 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 946 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 947 |
+
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
| 948 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
| 949 |
+
|
| 950 |
+
|
| 951 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 952 |
+
def __init__(self, use_spectral_norm=False):
|
| 953 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 954 |
+
periods = [2, 3, 5, 7, 11, 17]
|
| 955 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
| 956 |
+
|
| 957 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 958 |
+
discs = discs + [
|
| 959 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 960 |
+
]
|
| 961 |
+
self.discriminators = nn.ModuleList(discs)
|
| 962 |
+
|
| 963 |
+
def forward(self, y, y_hat):
|
| 964 |
+
y_d_rs = [] #
|
| 965 |
+
y_d_gs = []
|
| 966 |
+
fmap_rs = []
|
| 967 |
+
fmap_gs = []
|
| 968 |
+
for i, d in enumerate(self.discriminators):
|
| 969 |
+
y_d_r, fmap_r = d(y)
|
| 970 |
+
y_d_g, fmap_g = d(y_hat)
|
| 971 |
+
# for j in range(len(fmap_r)):
|
| 972 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 973 |
+
y_d_rs.append(y_d_r)
|
| 974 |
+
y_d_gs.append(y_d_g)
|
| 975 |
+
fmap_rs.append(fmap_r)
|
| 976 |
+
fmap_gs.append(fmap_g)
|
| 977 |
+
|
| 978 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 979 |
+
|
| 980 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
| 981 |
+
def __init__(self, use_spectral_norm=False):
|
| 982 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
| 983 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
| 984 |
+
periods = [2,3, 5, 7, 11, 17, 23, 37]
|
| 985 |
+
|
| 986 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 987 |
+
discs = discs + [
|
| 988 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 989 |
+
]
|
| 990 |
+
self.discriminators = nn.ModuleList(discs)
|
| 991 |
+
|
| 992 |
+
def forward(self, y, y_hat):
|
| 993 |
+
y_d_rs = [] #
|
| 994 |
+
y_d_gs = []
|
| 995 |
+
fmap_rs = []
|
| 996 |
+
fmap_gs = []
|
| 997 |
+
for i, d in enumerate(self.discriminators):
|
| 998 |
+
y_d_r, fmap_r = d(y)
|
| 999 |
+
y_d_g, fmap_g = d(y_hat)
|
| 1000 |
+
# for j in range(len(fmap_r)):
|
| 1001 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 1002 |
+
y_d_rs.append(y_d_r)
|
| 1003 |
+
y_d_gs.append(y_d_g)
|
| 1004 |
+
fmap_rs.append(fmap_r)
|
| 1005 |
+
fmap_gs.append(fmap_g)
|
| 1006 |
+
|
| 1007 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
class DiscriminatorS(torch.nn.Module):
|
| 1011 |
+
def __init__(self, use_spectral_norm=False):
|
| 1012 |
+
super(DiscriminatorS, self).__init__()
|
| 1013 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 1014 |
+
self.convs = nn.ModuleList(
|
| 1015 |
+
[
|
| 1016 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 1017 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 1018 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 1019 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 1020 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 1021 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 1022 |
+
]
|
| 1023 |
+
)
|
| 1024 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 1025 |
+
|
| 1026 |
+
def forward(self, x):
|
| 1027 |
+
fmap = []
|
| 1028 |
+
|
| 1029 |
+
for l in self.convs:
|
| 1030 |
+
x = l(x)
|
| 1031 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 1032 |
+
fmap.append(x)
|
| 1033 |
+
x = self.conv_post(x)
|
| 1034 |
+
fmap.append(x)
|
| 1035 |
+
x = torch.flatten(x, 1, -1)
|
| 1036 |
+
|
| 1037 |
+
return x, fmap
|
| 1038 |
+
|
| 1039 |
+
|
| 1040 |
+
class DiscriminatorP(torch.nn.Module):
|
| 1041 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 1042 |
+
super(DiscriminatorP, self).__init__()
|
| 1043 |
+
self.period = period
|
| 1044 |
+
self.use_spectral_norm = use_spectral_norm
|
| 1045 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 1046 |
+
self.convs = nn.ModuleList(
|
| 1047 |
+
[
|
| 1048 |
+
norm_f(
|
| 1049 |
+
Conv2d(
|
| 1050 |
+
1,
|
| 1051 |
+
32,
|
| 1052 |
+
(kernel_size, 1),
|
| 1053 |
+
(stride, 1),
|
| 1054 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1055 |
+
)
|
| 1056 |
+
),
|
| 1057 |
+
norm_f(
|
| 1058 |
+
Conv2d(
|
| 1059 |
+
32,
|
| 1060 |
+
128,
|
| 1061 |
+
(kernel_size, 1),
|
| 1062 |
+
(stride, 1),
|
| 1063 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1064 |
+
)
|
| 1065 |
+
),
|
| 1066 |
+
norm_f(
|
| 1067 |
+
Conv2d(
|
| 1068 |
+
128,
|
| 1069 |
+
512,
|
| 1070 |
+
(kernel_size, 1),
|
| 1071 |
+
(stride, 1),
|
| 1072 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1073 |
+
)
|
| 1074 |
+
),
|
| 1075 |
+
norm_f(
|
| 1076 |
+
Conv2d(
|
| 1077 |
+
512,
|
| 1078 |
+
1024,
|
| 1079 |
+
(kernel_size, 1),
|
| 1080 |
+
(stride, 1),
|
| 1081 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1082 |
+
)
|
| 1083 |
+
),
|
| 1084 |
+
norm_f(
|
| 1085 |
+
Conv2d(
|
| 1086 |
+
1024,
|
| 1087 |
+
1024,
|
| 1088 |
+
(kernel_size, 1),
|
| 1089 |
+
1,
|
| 1090 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 1091 |
+
)
|
| 1092 |
+
),
|
| 1093 |
+
]
|
| 1094 |
+
)
|
| 1095 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 1096 |
+
|
| 1097 |
+
def forward(self, x):
|
| 1098 |
+
fmap = []
|
| 1099 |
+
|
| 1100 |
+
# 1d to 2d
|
| 1101 |
+
b, c, t = x.shape
|
| 1102 |
+
if t % self.period != 0: # pad first
|
| 1103 |
+
n_pad = self.period - (t % self.period)
|
| 1104 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 1105 |
+
t = t + n_pad
|
| 1106 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 1107 |
+
|
| 1108 |
+
for l in self.convs:
|
| 1109 |
+
x = l(x)
|
| 1110 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 1111 |
+
fmap.append(x)
|
| 1112 |
+
x = self.conv_post(x)
|
| 1113 |
+
fmap.append(x)
|
| 1114 |
+
x = torch.flatten(x, 1, -1)
|
| 1115 |
+
|
| 1116 |
+
return x, fmap
|
infer_pack/models_onnx.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math, pdb, os
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from infer_pack import modules
|
| 7 |
+
from infer_pack import attentions
|
| 8 |
+
from infer_pack import commons
|
| 9 |
+
from infer_pack.commons import init_weights, get_padding
|
| 10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 12 |
+
from infer_pack.commons import init_weights
|
| 13 |
+
import numpy as np
|
| 14 |
+
from infer_pack import commons
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class TextEncoder256(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
out_channels,
|
| 21 |
+
hidden_channels,
|
| 22 |
+
filter_channels,
|
| 23 |
+
n_heads,
|
| 24 |
+
n_layers,
|
| 25 |
+
kernel_size,
|
| 26 |
+
p_dropout,
|
| 27 |
+
f0=True,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.out_channels = out_channels
|
| 31 |
+
self.hidden_channels = hidden_channels
|
| 32 |
+
self.filter_channels = filter_channels
|
| 33 |
+
self.n_heads = n_heads
|
| 34 |
+
self.n_layers = n_layers
|
| 35 |
+
self.kernel_size = kernel_size
|
| 36 |
+
self.p_dropout = p_dropout
|
| 37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
| 38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 39 |
+
if f0 == True:
|
| 40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 41 |
+
self.encoder = attentions.Encoder(
|
| 42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 43 |
+
)
|
| 44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 45 |
+
|
| 46 |
+
def forward(self, phone, pitch, lengths):
|
| 47 |
+
if pitch == None:
|
| 48 |
+
x = self.emb_phone(phone)
|
| 49 |
+
else:
|
| 50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 52 |
+
x = self.lrelu(x)
|
| 53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 55 |
+
x.dtype
|
| 56 |
+
)
|
| 57 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 58 |
+
stats = self.proj(x) * x_mask
|
| 59 |
+
|
| 60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 61 |
+
return m, logs, x_mask
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class TextEncoder256Sim(nn.Module):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
out_channels,
|
| 68 |
+
hidden_channels,
|
| 69 |
+
filter_channels,
|
| 70 |
+
n_heads,
|
| 71 |
+
n_layers,
|
| 72 |
+
kernel_size,
|
| 73 |
+
p_dropout,
|
| 74 |
+
f0=True,
|
| 75 |
+
):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.out_channels = out_channels
|
| 78 |
+
self.hidden_channels = hidden_channels
|
| 79 |
+
self.filter_channels = filter_channels
|
| 80 |
+
self.n_heads = n_heads
|
| 81 |
+
self.n_layers = n_layers
|
| 82 |
+
self.kernel_size = kernel_size
|
| 83 |
+
self.p_dropout = p_dropout
|
| 84 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
| 85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 86 |
+
if f0 == True:
|
| 87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 88 |
+
self.encoder = attentions.Encoder(
|
| 89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 90 |
+
)
|
| 91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
| 92 |
+
|
| 93 |
+
def forward(self, phone, pitch, lengths):
|
| 94 |
+
if pitch == None:
|
| 95 |
+
x = self.emb_phone(phone)
|
| 96 |
+
else:
|
| 97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 99 |
+
x = self.lrelu(x)
|
| 100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 102 |
+
x.dtype
|
| 103 |
+
)
|
| 104 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 105 |
+
x = self.proj(x) * x_mask
|
| 106 |
+
return x, x_mask
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class ResidualCouplingBlock(nn.Module):
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
channels,
|
| 113 |
+
hidden_channels,
|
| 114 |
+
kernel_size,
|
| 115 |
+
dilation_rate,
|
| 116 |
+
n_layers,
|
| 117 |
+
n_flows=4,
|
| 118 |
+
gin_channels=0,
|
| 119 |
+
):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.channels = channels
|
| 122 |
+
self.hidden_channels = hidden_channels
|
| 123 |
+
self.kernel_size = kernel_size
|
| 124 |
+
self.dilation_rate = dilation_rate
|
| 125 |
+
self.n_layers = n_layers
|
| 126 |
+
self.n_flows = n_flows
|
| 127 |
+
self.gin_channels = gin_channels
|
| 128 |
+
|
| 129 |
+
self.flows = nn.ModuleList()
|
| 130 |
+
for i in range(n_flows):
|
| 131 |
+
self.flows.append(
|
| 132 |
+
modules.ResidualCouplingLayer(
|
| 133 |
+
channels,
|
| 134 |
+
hidden_channels,
|
| 135 |
+
kernel_size,
|
| 136 |
+
dilation_rate,
|
| 137 |
+
n_layers,
|
| 138 |
+
gin_channels=gin_channels,
|
| 139 |
+
mean_only=True,
|
| 140 |
+
)
|
| 141 |
+
)
|
| 142 |
+
self.flows.append(modules.Flip())
|
| 143 |
+
|
| 144 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 145 |
+
if not reverse:
|
| 146 |
+
for flow in self.flows:
|
| 147 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 148 |
+
else:
|
| 149 |
+
for flow in reversed(self.flows):
|
| 150 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 151 |
+
return x
|
| 152 |
+
|
| 153 |
+
def remove_weight_norm(self):
|
| 154 |
+
for i in range(self.n_flows):
|
| 155 |
+
self.flows[i * 2].remove_weight_norm()
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class PosteriorEncoder(nn.Module):
|
| 159 |
+
def __init__(
|
| 160 |
+
self,
|
| 161 |
+
in_channels,
|
| 162 |
+
out_channels,
|
| 163 |
+
hidden_channels,
|
| 164 |
+
kernel_size,
|
| 165 |
+
dilation_rate,
|
| 166 |
+
n_layers,
|
| 167 |
+
gin_channels=0,
|
| 168 |
+
):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.in_channels = in_channels
|
| 171 |
+
self.out_channels = out_channels
|
| 172 |
+
self.hidden_channels = hidden_channels
|
| 173 |
+
self.kernel_size = kernel_size
|
| 174 |
+
self.dilation_rate = dilation_rate
|
| 175 |
+
self.n_layers = n_layers
|
| 176 |
+
self.gin_channels = gin_channels
|
| 177 |
+
|
| 178 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 179 |
+
self.enc = modules.WN(
|
| 180 |
+
hidden_channels,
|
| 181 |
+
kernel_size,
|
| 182 |
+
dilation_rate,
|
| 183 |
+
n_layers,
|
| 184 |
+
gin_channels=gin_channels,
|
| 185 |
+
)
|
| 186 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 187 |
+
|
| 188 |
+
def forward(self, x, x_lengths, g=None):
|
| 189 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 190 |
+
x.dtype
|
| 191 |
+
)
|
| 192 |
+
x = self.pre(x) * x_mask
|
| 193 |
+
x = self.enc(x, x_mask, g=g)
|
| 194 |
+
stats = self.proj(x) * x_mask
|
| 195 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 196 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 197 |
+
return z, m, logs, x_mask
|
| 198 |
+
|
| 199 |
+
def remove_weight_norm(self):
|
| 200 |
+
self.enc.remove_weight_norm()
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class Generator(torch.nn.Module):
|
| 204 |
+
def __init__(
|
| 205 |
+
self,
|
| 206 |
+
initial_channel,
|
| 207 |
+
resblock,
|
| 208 |
+
resblock_kernel_sizes,
|
| 209 |
+
resblock_dilation_sizes,
|
| 210 |
+
upsample_rates,
|
| 211 |
+
upsample_initial_channel,
|
| 212 |
+
upsample_kernel_sizes,
|
| 213 |
+
gin_channels=0,
|
| 214 |
+
):
|
| 215 |
+
super(Generator, self).__init__()
|
| 216 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 217 |
+
self.num_upsamples = len(upsample_rates)
|
| 218 |
+
self.conv_pre = Conv1d(
|
| 219 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 220 |
+
)
|
| 221 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 222 |
+
|
| 223 |
+
self.ups = nn.ModuleList()
|
| 224 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 225 |
+
self.ups.append(
|
| 226 |
+
weight_norm(
|
| 227 |
+
ConvTranspose1d(
|
| 228 |
+
upsample_initial_channel // (2**i),
|
| 229 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 230 |
+
k,
|
| 231 |
+
u,
|
| 232 |
+
padding=(k - u) // 2,
|
| 233 |
+
)
|
| 234 |
+
)
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
self.resblocks = nn.ModuleList()
|
| 238 |
+
for i in range(len(self.ups)):
|
| 239 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 240 |
+
for j, (k, d) in enumerate(
|
| 241 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 242 |
+
):
|
| 243 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 244 |
+
|
| 245 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 246 |
+
self.ups.apply(init_weights)
|
| 247 |
+
|
| 248 |
+
if gin_channels != 0:
|
| 249 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 250 |
+
|
| 251 |
+
def forward(self, x, g=None):
|
| 252 |
+
x = self.conv_pre(x)
|
| 253 |
+
if g is not None:
|
| 254 |
+
x = x + self.cond(g)
|
| 255 |
+
|
| 256 |
+
for i in range(self.num_upsamples):
|
| 257 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 258 |
+
x = self.ups[i](x)
|
| 259 |
+
xs = None
|
| 260 |
+
for j in range(self.num_kernels):
|
| 261 |
+
if xs is None:
|
| 262 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 263 |
+
else:
|
| 264 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 265 |
+
x = xs / self.num_kernels
|
| 266 |
+
x = F.leaky_relu(x)
|
| 267 |
+
x = self.conv_post(x)
|
| 268 |
+
x = torch.tanh(x)
|
| 269 |
+
|
| 270 |
+
return x
|
| 271 |
+
|
| 272 |
+
def remove_weight_norm(self):
|
| 273 |
+
for l in self.ups:
|
| 274 |
+
remove_weight_norm(l)
|
| 275 |
+
for l in self.resblocks:
|
| 276 |
+
l.remove_weight_norm()
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
class SineGen(torch.nn.Module):
|
| 280 |
+
"""Definition of sine generator
|
| 281 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 282 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 283 |
+
voiced_threshold = 0,
|
| 284 |
+
flag_for_pulse=False)
|
| 285 |
+
samp_rate: sampling rate in Hz
|
| 286 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 287 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 288 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 289 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 290 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 291 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 292 |
+
segment is always sin(np.pi) or cos(0)
|
| 293 |
+
"""
|
| 294 |
+
|
| 295 |
+
def __init__(
|
| 296 |
+
self,
|
| 297 |
+
samp_rate,
|
| 298 |
+
harmonic_num=0,
|
| 299 |
+
sine_amp=0.1,
|
| 300 |
+
noise_std=0.003,
|
| 301 |
+
voiced_threshold=0,
|
| 302 |
+
flag_for_pulse=False,
|
| 303 |
+
):
|
| 304 |
+
super(SineGen, self).__init__()
|
| 305 |
+
self.sine_amp = sine_amp
|
| 306 |
+
self.noise_std = noise_std
|
| 307 |
+
self.harmonic_num = harmonic_num
|
| 308 |
+
self.dim = self.harmonic_num + 1
|
| 309 |
+
self.sampling_rate = samp_rate
|
| 310 |
+
self.voiced_threshold = voiced_threshold
|
| 311 |
+
|
| 312 |
+
def _f02uv(self, f0):
|
| 313 |
+
# generate uv signal
|
| 314 |
+
uv = torch.ones_like(f0)
|
| 315 |
+
uv = uv * (f0 > self.voiced_threshold)
|
| 316 |
+
return uv
|
| 317 |
+
|
| 318 |
+
def forward(self, f0, upp):
|
| 319 |
+
"""sine_tensor, uv = forward(f0)
|
| 320 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 321 |
+
f0 for unvoiced steps should be 0
|
| 322 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 323 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 324 |
+
"""
|
| 325 |
+
with torch.no_grad():
|
| 326 |
+
f0 = f0[:, None].transpose(1, 2)
|
| 327 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
| 328 |
+
# fundamental component
|
| 329 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
| 330 |
+
for idx in np.arange(self.harmonic_num):
|
| 331 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
| 332 |
+
idx + 2
|
| 333 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
| 334 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
| 335 |
+
rand_ini = torch.rand(
|
| 336 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
| 337 |
+
)
|
| 338 |
+
rand_ini[:, 0] = 0
|
| 339 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 340 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
| 341 |
+
tmp_over_one *= upp
|
| 342 |
+
tmp_over_one = F.interpolate(
|
| 343 |
+
tmp_over_one.transpose(2, 1),
|
| 344 |
+
scale_factor=upp,
|
| 345 |
+
mode="linear",
|
| 346 |
+
align_corners=True,
|
| 347 |
+
).transpose(2, 1)
|
| 348 |
+
rad_values = F.interpolate(
|
| 349 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 350 |
+
).transpose(
|
| 351 |
+
2, 1
|
| 352 |
+
) #######
|
| 353 |
+
tmp_over_one %= 1
|
| 354 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
| 355 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
| 356 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 357 |
+
sine_waves = torch.sin(
|
| 358 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
| 359 |
+
)
|
| 360 |
+
sine_waves = sine_waves * self.sine_amp
|
| 361 |
+
uv = self._f02uv(f0)
|
| 362 |
+
uv = F.interpolate(
|
| 363 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 364 |
+
).transpose(2, 1)
|
| 365 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 366 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 367 |
+
sine_waves = sine_waves * uv + noise
|
| 368 |
+
return sine_waves, uv, noise
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 372 |
+
"""SourceModule for hn-nsf
|
| 373 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 374 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 375 |
+
sampling_rate: sampling_rate in Hz
|
| 376 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 377 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 378 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 379 |
+
note that amplitude of noise in unvoiced is decided
|
| 380 |
+
by sine_amp
|
| 381 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 382 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 383 |
+
F0_sampled (batchsize, length, 1)
|
| 384 |
+
Sine_source (batchsize, length, 1)
|
| 385 |
+
noise_source (batchsize, length 1)
|
| 386 |
+
uv (batchsize, length, 1)
|
| 387 |
+
"""
|
| 388 |
+
|
| 389 |
+
def __init__(
|
| 390 |
+
self,
|
| 391 |
+
sampling_rate,
|
| 392 |
+
harmonic_num=0,
|
| 393 |
+
sine_amp=0.1,
|
| 394 |
+
add_noise_std=0.003,
|
| 395 |
+
voiced_threshod=0,
|
| 396 |
+
is_half=True,
|
| 397 |
+
):
|
| 398 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 399 |
+
|
| 400 |
+
self.sine_amp = sine_amp
|
| 401 |
+
self.noise_std = add_noise_std
|
| 402 |
+
self.is_half = is_half
|
| 403 |
+
# to produce sine waveforms
|
| 404 |
+
self.l_sin_gen = SineGen(
|
| 405 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
# to merge source harmonics into a single excitation
|
| 409 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 410 |
+
self.l_tanh = torch.nn.Tanh()
|
| 411 |
+
|
| 412 |
+
def forward(self, x, upp=None):
|
| 413 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
| 414 |
+
if self.is_half:
|
| 415 |
+
sine_wavs = sine_wavs.half()
|
| 416 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 417 |
+
return sine_merge, None, None # noise, uv
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
class GeneratorNSF(torch.nn.Module):
|
| 421 |
+
def __init__(
|
| 422 |
+
self,
|
| 423 |
+
initial_channel,
|
| 424 |
+
resblock,
|
| 425 |
+
resblock_kernel_sizes,
|
| 426 |
+
resblock_dilation_sizes,
|
| 427 |
+
upsample_rates,
|
| 428 |
+
upsample_initial_channel,
|
| 429 |
+
upsample_kernel_sizes,
|
| 430 |
+
gin_channels,
|
| 431 |
+
sr,
|
| 432 |
+
is_half=False,
|
| 433 |
+
):
|
| 434 |
+
super(GeneratorNSF, self).__init__()
|
| 435 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 436 |
+
self.num_upsamples = len(upsample_rates)
|
| 437 |
+
|
| 438 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 439 |
+
self.m_source = SourceModuleHnNSF(
|
| 440 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
| 441 |
+
)
|
| 442 |
+
self.noise_convs = nn.ModuleList()
|
| 443 |
+
self.conv_pre = Conv1d(
|
| 444 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 445 |
+
)
|
| 446 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 447 |
+
|
| 448 |
+
self.ups = nn.ModuleList()
|
| 449 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 450 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 451 |
+
self.ups.append(
|
| 452 |
+
weight_norm(
|
| 453 |
+
ConvTranspose1d(
|
| 454 |
+
upsample_initial_channel // (2**i),
|
| 455 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 456 |
+
k,
|
| 457 |
+
u,
|
| 458 |
+
padding=(k - u) // 2,
|
| 459 |
+
)
|
| 460 |
+
)
|
| 461 |
+
)
|
| 462 |
+
if i + 1 < len(upsample_rates):
|
| 463 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
| 464 |
+
self.noise_convs.append(
|
| 465 |
+
Conv1d(
|
| 466 |
+
1,
|
| 467 |
+
c_cur,
|
| 468 |
+
kernel_size=stride_f0 * 2,
|
| 469 |
+
stride=stride_f0,
|
| 470 |
+
padding=stride_f0 // 2,
|
| 471 |
+
)
|
| 472 |
+
)
|
| 473 |
+
else:
|
| 474 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 475 |
+
|
| 476 |
+
self.resblocks = nn.ModuleList()
|
| 477 |
+
for i in range(len(self.ups)):
|
| 478 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 479 |
+
for j, (k, d) in enumerate(
|
| 480 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 481 |
+
):
|
| 482 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 483 |
+
|
| 484 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 485 |
+
self.ups.apply(init_weights)
|
| 486 |
+
|
| 487 |
+
if gin_channels != 0:
|
| 488 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 489 |
+
|
| 490 |
+
self.upp = np.prod(upsample_rates)
|
| 491 |
+
|
| 492 |
+
def forward(self, x, f0, g=None):
|
| 493 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
| 494 |
+
har_source = har_source.transpose(1, 2)
|
| 495 |
+
x = self.conv_pre(x)
|
| 496 |
+
if g is not None:
|
| 497 |
+
x = x + self.cond(g)
|
| 498 |
+
|
| 499 |
+
for i in range(self.num_upsamples):
|
| 500 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 501 |
+
x = self.ups[i](x)
|
| 502 |
+
x_source = self.noise_convs[i](har_source)
|
| 503 |
+
x = x + x_source
|
| 504 |
+
xs = None
|
| 505 |
+
for j in range(self.num_kernels):
|
| 506 |
+
if xs is None:
|
| 507 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 508 |
+
else:
|
| 509 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 510 |
+
x = xs / self.num_kernels
|
| 511 |
+
x = F.leaky_relu(x)
|
| 512 |
+
x = self.conv_post(x)
|
| 513 |
+
x = torch.tanh(x)
|
| 514 |
+
return x
|
| 515 |
+
|
| 516 |
+
def remove_weight_norm(self):
|
| 517 |
+
for l in self.ups:
|
| 518 |
+
remove_weight_norm(l)
|
| 519 |
+
for l in self.resblocks:
|
| 520 |
+
l.remove_weight_norm()
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
sr2sr = {
|
| 524 |
+
"32k": 32000,
|
| 525 |
+
"40k": 40000,
|
| 526 |
+
"48k": 48000,
|
| 527 |
+
}
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
class SynthesizerTrnMs256NSFsidO(nn.Module):
|
| 531 |
+
def __init__(
|
| 532 |
+
self,
|
| 533 |
+
spec_channels,
|
| 534 |
+
segment_size,
|
| 535 |
+
inter_channels,
|
| 536 |
+
hidden_channels,
|
| 537 |
+
filter_channels,
|
| 538 |
+
n_heads,
|
| 539 |
+
n_layers,
|
| 540 |
+
kernel_size,
|
| 541 |
+
p_dropout,
|
| 542 |
+
resblock,
|
| 543 |
+
resblock_kernel_sizes,
|
| 544 |
+
resblock_dilation_sizes,
|
| 545 |
+
upsample_rates,
|
| 546 |
+
upsample_initial_channel,
|
| 547 |
+
upsample_kernel_sizes,
|
| 548 |
+
spk_embed_dim,
|
| 549 |
+
gin_channels,
|
| 550 |
+
sr,
|
| 551 |
+
**kwargs
|
| 552 |
+
):
|
| 553 |
+
super().__init__()
|
| 554 |
+
if type(sr) == type("strr"):
|
| 555 |
+
sr = sr2sr[sr]
|
| 556 |
+
self.spec_channels = spec_channels
|
| 557 |
+
self.inter_channels = inter_channels
|
| 558 |
+
self.hidden_channels = hidden_channels
|
| 559 |
+
self.filter_channels = filter_channels
|
| 560 |
+
self.n_heads = n_heads
|
| 561 |
+
self.n_layers = n_layers
|
| 562 |
+
self.kernel_size = kernel_size
|
| 563 |
+
self.p_dropout = p_dropout
|
| 564 |
+
self.resblock = resblock
|
| 565 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 566 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 567 |
+
self.upsample_rates = upsample_rates
|
| 568 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 569 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 570 |
+
self.segment_size = segment_size
|
| 571 |
+
self.gin_channels = gin_channels
|
| 572 |
+
# self.hop_length = hop_length#
|
| 573 |
+
self.spk_embed_dim = spk_embed_dim
|
| 574 |
+
self.enc_p = TextEncoder256(
|
| 575 |
+
inter_channels,
|
| 576 |
+
hidden_channels,
|
| 577 |
+
filter_channels,
|
| 578 |
+
n_heads,
|
| 579 |
+
n_layers,
|
| 580 |
+
kernel_size,
|
| 581 |
+
p_dropout,
|
| 582 |
+
)
|
| 583 |
+
self.dec = GeneratorNSF(
|
| 584 |
+
inter_channels,
|
| 585 |
+
resblock,
|
| 586 |
+
resblock_kernel_sizes,
|
| 587 |
+
resblock_dilation_sizes,
|
| 588 |
+
upsample_rates,
|
| 589 |
+
upsample_initial_channel,
|
| 590 |
+
upsample_kernel_sizes,
|
| 591 |
+
gin_channels=gin_channels,
|
| 592 |
+
sr=sr,
|
| 593 |
+
is_half=kwargs["is_half"],
|
| 594 |
+
)
|
| 595 |
+
self.enc_q = PosteriorEncoder(
|
| 596 |
+
spec_channels,
|
| 597 |
+
inter_channels,
|
| 598 |
+
hidden_channels,
|
| 599 |
+
5,
|
| 600 |
+
1,
|
| 601 |
+
16,
|
| 602 |
+
gin_channels=gin_channels,
|
| 603 |
+
)
|
| 604 |
+
self.flow = ResidualCouplingBlock(
|
| 605 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 606 |
+
)
|
| 607 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 608 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 609 |
+
|
| 610 |
+
def remove_weight_norm(self):
|
| 611 |
+
self.dec.remove_weight_norm()
|
| 612 |
+
self.flow.remove_weight_norm()
|
| 613 |
+
self.enc_q.remove_weight_norm()
|
| 614 |
+
|
| 615 |
+
def forward(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
| 616 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 617 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 618 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
| 619 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 620 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 621 |
+
return o
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 625 |
+
def __init__(self, use_spectral_norm=False):
|
| 626 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 627 |
+
periods = [2, 3, 5, 7, 11, 17]
|
| 628 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
| 629 |
+
|
| 630 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 631 |
+
discs = discs + [
|
| 632 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 633 |
+
]
|
| 634 |
+
self.discriminators = nn.ModuleList(discs)
|
| 635 |
+
|
| 636 |
+
def forward(self, y, y_hat):
|
| 637 |
+
y_d_rs = [] #
|
| 638 |
+
y_d_gs = []
|
| 639 |
+
fmap_rs = []
|
| 640 |
+
fmap_gs = []
|
| 641 |
+
for i, d in enumerate(self.discriminators):
|
| 642 |
+
y_d_r, fmap_r = d(y)
|
| 643 |
+
y_d_g, fmap_g = d(y_hat)
|
| 644 |
+
# for j in range(len(fmap_r)):
|
| 645 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 646 |
+
y_d_rs.append(y_d_r)
|
| 647 |
+
y_d_gs.append(y_d_g)
|
| 648 |
+
fmap_rs.append(fmap_r)
|
| 649 |
+
fmap_gs.append(fmap_g)
|
| 650 |
+
|
| 651 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
class DiscriminatorS(torch.nn.Module):
|
| 655 |
+
def __init__(self, use_spectral_norm=False):
|
| 656 |
+
super(DiscriminatorS, self).__init__()
|
| 657 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 658 |
+
self.convs = nn.ModuleList(
|
| 659 |
+
[
|
| 660 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 661 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 662 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 663 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 664 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 665 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 666 |
+
]
|
| 667 |
+
)
|
| 668 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 669 |
+
|
| 670 |
+
def forward(self, x):
|
| 671 |
+
fmap = []
|
| 672 |
+
|
| 673 |
+
for l in self.convs:
|
| 674 |
+
x = l(x)
|
| 675 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 676 |
+
fmap.append(x)
|
| 677 |
+
x = self.conv_post(x)
|
| 678 |
+
fmap.append(x)
|
| 679 |
+
x = torch.flatten(x, 1, -1)
|
| 680 |
+
|
| 681 |
+
return x, fmap
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
class DiscriminatorP(torch.nn.Module):
|
| 685 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 686 |
+
super(DiscriminatorP, self).__init__()
|
| 687 |
+
self.period = period
|
| 688 |
+
self.use_spectral_norm = use_spectral_norm
|
| 689 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 690 |
+
self.convs = nn.ModuleList(
|
| 691 |
+
[
|
| 692 |
+
norm_f(
|
| 693 |
+
Conv2d(
|
| 694 |
+
1,
|
| 695 |
+
32,
|
| 696 |
+
(kernel_size, 1),
|
| 697 |
+
(stride, 1),
|
| 698 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 699 |
+
)
|
| 700 |
+
),
|
| 701 |
+
norm_f(
|
| 702 |
+
Conv2d(
|
| 703 |
+
32,
|
| 704 |
+
128,
|
| 705 |
+
(kernel_size, 1),
|
| 706 |
+
(stride, 1),
|
| 707 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 708 |
+
)
|
| 709 |
+
),
|
| 710 |
+
norm_f(
|
| 711 |
+
Conv2d(
|
| 712 |
+
128,
|
| 713 |
+
512,
|
| 714 |
+
(kernel_size, 1),
|
| 715 |
+
(stride, 1),
|
| 716 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 717 |
+
)
|
| 718 |
+
),
|
| 719 |
+
norm_f(
|
| 720 |
+
Conv2d(
|
| 721 |
+
512,
|
| 722 |
+
1024,
|
| 723 |
+
(kernel_size, 1),
|
| 724 |
+
(stride, 1),
|
| 725 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 726 |
+
)
|
| 727 |
+
),
|
| 728 |
+
norm_f(
|
| 729 |
+
Conv2d(
|
| 730 |
+
1024,
|
| 731 |
+
1024,
|
| 732 |
+
(kernel_size, 1),
|
| 733 |
+
1,
|
| 734 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 735 |
+
)
|
| 736 |
+
),
|
| 737 |
+
]
|
| 738 |
+
)
|
| 739 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 740 |
+
|
| 741 |
+
def forward(self, x):
|
| 742 |
+
fmap = []
|
| 743 |
+
|
| 744 |
+
# 1d to 2d
|
| 745 |
+
b, c, t = x.shape
|
| 746 |
+
if t % self.period != 0: # pad first
|
| 747 |
+
n_pad = self.period - (t % self.period)
|
| 748 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 749 |
+
t = t + n_pad
|
| 750 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 751 |
+
|
| 752 |
+
for l in self.convs:
|
| 753 |
+
x = l(x)
|
| 754 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 755 |
+
fmap.append(x)
|
| 756 |
+
x = self.conv_post(x)
|
| 757 |
+
fmap.append(x)
|
| 758 |
+
x = torch.flatten(x, 1, -1)
|
| 759 |
+
|
| 760 |
+
return x, fmap
|
infer_pack/models_onnx_moess.py
ADDED
|
@@ -0,0 +1,849 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math, pdb, os
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from infer_pack import modules
|
| 7 |
+
from infer_pack import attentions
|
| 8 |
+
from infer_pack import commons
|
| 9 |
+
from infer_pack.commons import init_weights, get_padding
|
| 10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 12 |
+
from infer_pack.commons import init_weights
|
| 13 |
+
import numpy as np
|
| 14 |
+
from infer_pack import commons
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class TextEncoder256(nn.Module):
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
out_channels,
|
| 21 |
+
hidden_channels,
|
| 22 |
+
filter_channels,
|
| 23 |
+
n_heads,
|
| 24 |
+
n_layers,
|
| 25 |
+
kernel_size,
|
| 26 |
+
p_dropout,
|
| 27 |
+
f0=True,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.out_channels = out_channels
|
| 31 |
+
self.hidden_channels = hidden_channels
|
| 32 |
+
self.filter_channels = filter_channels
|
| 33 |
+
self.n_heads = n_heads
|
| 34 |
+
self.n_layers = n_layers
|
| 35 |
+
self.kernel_size = kernel_size
|
| 36 |
+
self.p_dropout = p_dropout
|
| 37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
| 38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 39 |
+
if f0 == True:
|
| 40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 41 |
+
self.encoder = attentions.Encoder(
|
| 42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 43 |
+
)
|
| 44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 45 |
+
|
| 46 |
+
def forward(self, phone, pitch, lengths):
|
| 47 |
+
if pitch == None:
|
| 48 |
+
x = self.emb_phone(phone)
|
| 49 |
+
else:
|
| 50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 52 |
+
x = self.lrelu(x)
|
| 53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 55 |
+
x.dtype
|
| 56 |
+
)
|
| 57 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 58 |
+
stats = self.proj(x) * x_mask
|
| 59 |
+
|
| 60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 61 |
+
return m, logs, x_mask
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class TextEncoder256Sim(nn.Module):
|
| 65 |
+
def __init__(
|
| 66 |
+
self,
|
| 67 |
+
out_channels,
|
| 68 |
+
hidden_channels,
|
| 69 |
+
filter_channels,
|
| 70 |
+
n_heads,
|
| 71 |
+
n_layers,
|
| 72 |
+
kernel_size,
|
| 73 |
+
p_dropout,
|
| 74 |
+
f0=True,
|
| 75 |
+
):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.out_channels = out_channels
|
| 78 |
+
self.hidden_channels = hidden_channels
|
| 79 |
+
self.filter_channels = filter_channels
|
| 80 |
+
self.n_heads = n_heads
|
| 81 |
+
self.n_layers = n_layers
|
| 82 |
+
self.kernel_size = kernel_size
|
| 83 |
+
self.p_dropout = p_dropout
|
| 84 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
| 85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
| 86 |
+
if f0 == True:
|
| 87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
| 88 |
+
self.encoder = attentions.Encoder(
|
| 89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
| 90 |
+
)
|
| 91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
| 92 |
+
|
| 93 |
+
def forward(self, phone, pitch, lengths):
|
| 94 |
+
if pitch == None:
|
| 95 |
+
x = self.emb_phone(phone)
|
| 96 |
+
else:
|
| 97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
| 98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 99 |
+
x = self.lrelu(x)
|
| 100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
| 102 |
+
x.dtype
|
| 103 |
+
)
|
| 104 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 105 |
+
x = self.proj(x) * x_mask
|
| 106 |
+
return x, x_mask
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class ResidualCouplingBlock(nn.Module):
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
channels,
|
| 113 |
+
hidden_channels,
|
| 114 |
+
kernel_size,
|
| 115 |
+
dilation_rate,
|
| 116 |
+
n_layers,
|
| 117 |
+
n_flows=4,
|
| 118 |
+
gin_channels=0,
|
| 119 |
+
):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.channels = channels
|
| 122 |
+
self.hidden_channels = hidden_channels
|
| 123 |
+
self.kernel_size = kernel_size
|
| 124 |
+
self.dilation_rate = dilation_rate
|
| 125 |
+
self.n_layers = n_layers
|
| 126 |
+
self.n_flows = n_flows
|
| 127 |
+
self.gin_channels = gin_channels
|
| 128 |
+
|
| 129 |
+
self.flows = nn.ModuleList()
|
| 130 |
+
for i in range(n_flows):
|
| 131 |
+
self.flows.append(
|
| 132 |
+
modules.ResidualCouplingLayer(
|
| 133 |
+
channels,
|
| 134 |
+
hidden_channels,
|
| 135 |
+
kernel_size,
|
| 136 |
+
dilation_rate,
|
| 137 |
+
n_layers,
|
| 138 |
+
gin_channels=gin_channels,
|
| 139 |
+
mean_only=True,
|
| 140 |
+
)
|
| 141 |
+
)
|
| 142 |
+
self.flows.append(modules.Flip())
|
| 143 |
+
|
| 144 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 145 |
+
if not reverse:
|
| 146 |
+
for flow in self.flows:
|
| 147 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 148 |
+
else:
|
| 149 |
+
for flow in reversed(self.flows):
|
| 150 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 151 |
+
return x
|
| 152 |
+
|
| 153 |
+
def remove_weight_norm(self):
|
| 154 |
+
for i in range(self.n_flows):
|
| 155 |
+
self.flows[i * 2].remove_weight_norm()
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class PosteriorEncoder(nn.Module):
|
| 159 |
+
def __init__(
|
| 160 |
+
self,
|
| 161 |
+
in_channels,
|
| 162 |
+
out_channels,
|
| 163 |
+
hidden_channels,
|
| 164 |
+
kernel_size,
|
| 165 |
+
dilation_rate,
|
| 166 |
+
n_layers,
|
| 167 |
+
gin_channels=0,
|
| 168 |
+
):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.in_channels = in_channels
|
| 171 |
+
self.out_channels = out_channels
|
| 172 |
+
self.hidden_channels = hidden_channels
|
| 173 |
+
self.kernel_size = kernel_size
|
| 174 |
+
self.dilation_rate = dilation_rate
|
| 175 |
+
self.n_layers = n_layers
|
| 176 |
+
self.gin_channels = gin_channels
|
| 177 |
+
|
| 178 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 179 |
+
self.enc = modules.WN(
|
| 180 |
+
hidden_channels,
|
| 181 |
+
kernel_size,
|
| 182 |
+
dilation_rate,
|
| 183 |
+
n_layers,
|
| 184 |
+
gin_channels=gin_channels,
|
| 185 |
+
)
|
| 186 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 187 |
+
|
| 188 |
+
def forward(self, x, x_lengths, g=None):
|
| 189 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 190 |
+
x.dtype
|
| 191 |
+
)
|
| 192 |
+
x = self.pre(x) * x_mask
|
| 193 |
+
x = self.enc(x, x_mask, g=g)
|
| 194 |
+
stats = self.proj(x) * x_mask
|
| 195 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 196 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 197 |
+
return z, m, logs, x_mask
|
| 198 |
+
|
| 199 |
+
def remove_weight_norm(self):
|
| 200 |
+
self.enc.remove_weight_norm()
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class Generator(torch.nn.Module):
|
| 204 |
+
def __init__(
|
| 205 |
+
self,
|
| 206 |
+
initial_channel,
|
| 207 |
+
resblock,
|
| 208 |
+
resblock_kernel_sizes,
|
| 209 |
+
resblock_dilation_sizes,
|
| 210 |
+
upsample_rates,
|
| 211 |
+
upsample_initial_channel,
|
| 212 |
+
upsample_kernel_sizes,
|
| 213 |
+
gin_channels=0,
|
| 214 |
+
):
|
| 215 |
+
super(Generator, self).__init__()
|
| 216 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 217 |
+
self.num_upsamples = len(upsample_rates)
|
| 218 |
+
self.conv_pre = Conv1d(
|
| 219 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 220 |
+
)
|
| 221 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 222 |
+
|
| 223 |
+
self.ups = nn.ModuleList()
|
| 224 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 225 |
+
self.ups.append(
|
| 226 |
+
weight_norm(
|
| 227 |
+
ConvTranspose1d(
|
| 228 |
+
upsample_initial_channel // (2**i),
|
| 229 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 230 |
+
k,
|
| 231 |
+
u,
|
| 232 |
+
padding=(k - u) // 2,
|
| 233 |
+
)
|
| 234 |
+
)
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
self.resblocks = nn.ModuleList()
|
| 238 |
+
for i in range(len(self.ups)):
|
| 239 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 240 |
+
for j, (k, d) in enumerate(
|
| 241 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 242 |
+
):
|
| 243 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 244 |
+
|
| 245 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 246 |
+
self.ups.apply(init_weights)
|
| 247 |
+
|
| 248 |
+
if gin_channels != 0:
|
| 249 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 250 |
+
|
| 251 |
+
def forward(self, x, g=None):
|
| 252 |
+
x = self.conv_pre(x)
|
| 253 |
+
if g is not None:
|
| 254 |
+
x = x + self.cond(g)
|
| 255 |
+
|
| 256 |
+
for i in range(self.num_upsamples):
|
| 257 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 258 |
+
x = self.ups[i](x)
|
| 259 |
+
xs = None
|
| 260 |
+
for j in range(self.num_kernels):
|
| 261 |
+
if xs is None:
|
| 262 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 263 |
+
else:
|
| 264 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 265 |
+
x = xs / self.num_kernels
|
| 266 |
+
x = F.leaky_relu(x)
|
| 267 |
+
x = self.conv_post(x)
|
| 268 |
+
x = torch.tanh(x)
|
| 269 |
+
|
| 270 |
+
return x
|
| 271 |
+
|
| 272 |
+
def remove_weight_norm(self):
|
| 273 |
+
for l in self.ups:
|
| 274 |
+
remove_weight_norm(l)
|
| 275 |
+
for l in self.resblocks:
|
| 276 |
+
l.remove_weight_norm()
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
class SineGen(torch.nn.Module):
|
| 280 |
+
"""Definition of sine generator
|
| 281 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 282 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 283 |
+
voiced_threshold = 0,
|
| 284 |
+
flag_for_pulse=False)
|
| 285 |
+
samp_rate: sampling rate in Hz
|
| 286 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 287 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 288 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 289 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 290 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 291 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 292 |
+
segment is always sin(np.pi) or cos(0)
|
| 293 |
+
"""
|
| 294 |
+
|
| 295 |
+
def __init__(
|
| 296 |
+
self,
|
| 297 |
+
samp_rate,
|
| 298 |
+
harmonic_num=0,
|
| 299 |
+
sine_amp=0.1,
|
| 300 |
+
noise_std=0.003,
|
| 301 |
+
voiced_threshold=0,
|
| 302 |
+
flag_for_pulse=False,
|
| 303 |
+
):
|
| 304 |
+
super(SineGen, self).__init__()
|
| 305 |
+
self.sine_amp = sine_amp
|
| 306 |
+
self.noise_std = noise_std
|
| 307 |
+
self.harmonic_num = harmonic_num
|
| 308 |
+
self.dim = self.harmonic_num + 1
|
| 309 |
+
self.sampling_rate = samp_rate
|
| 310 |
+
self.voiced_threshold = voiced_threshold
|
| 311 |
+
|
| 312 |
+
def _f02uv(self, f0):
|
| 313 |
+
# generate uv signal
|
| 314 |
+
uv = torch.ones_like(f0)
|
| 315 |
+
uv = uv * (f0 > self.voiced_threshold)
|
| 316 |
+
return uv
|
| 317 |
+
|
| 318 |
+
def forward(self, f0, upp):
|
| 319 |
+
"""sine_tensor, uv = forward(f0)
|
| 320 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 321 |
+
f0 for unvoiced steps should be 0
|
| 322 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 323 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 324 |
+
"""
|
| 325 |
+
with torch.no_grad():
|
| 326 |
+
f0 = f0[:, None].transpose(1, 2)
|
| 327 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
| 328 |
+
# fundamental component
|
| 329 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
| 330 |
+
for idx in np.arange(self.harmonic_num):
|
| 331 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
| 332 |
+
idx + 2
|
| 333 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
| 334 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
| 335 |
+
rand_ini = torch.rand(
|
| 336 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
| 337 |
+
)
|
| 338 |
+
rand_ini[:, 0] = 0
|
| 339 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 340 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
| 341 |
+
tmp_over_one *= upp
|
| 342 |
+
tmp_over_one = F.interpolate(
|
| 343 |
+
tmp_over_one.transpose(2, 1),
|
| 344 |
+
scale_factor=upp,
|
| 345 |
+
mode="linear",
|
| 346 |
+
align_corners=True,
|
| 347 |
+
).transpose(2, 1)
|
| 348 |
+
rad_values = F.interpolate(
|
| 349 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 350 |
+
).transpose(
|
| 351 |
+
2, 1
|
| 352 |
+
) #######
|
| 353 |
+
tmp_over_one %= 1
|
| 354 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
| 355 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
| 356 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 357 |
+
sine_waves = torch.sin(
|
| 358 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
| 359 |
+
)
|
| 360 |
+
sine_waves = sine_waves * self.sine_amp
|
| 361 |
+
uv = self._f02uv(f0)
|
| 362 |
+
uv = F.interpolate(
|
| 363 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
| 364 |
+
).transpose(2, 1)
|
| 365 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 366 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 367 |
+
sine_waves = sine_waves * uv + noise
|
| 368 |
+
return sine_waves, uv, noise
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 372 |
+
"""SourceModule for hn-nsf
|
| 373 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 374 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 375 |
+
sampling_rate: sampling_rate in Hz
|
| 376 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 377 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 378 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 379 |
+
note that amplitude of noise in unvoiced is decided
|
| 380 |
+
by sine_amp
|
| 381 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 382 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 383 |
+
F0_sampled (batchsize, length, 1)
|
| 384 |
+
Sine_source (batchsize, length, 1)
|
| 385 |
+
noise_source (batchsize, length 1)
|
| 386 |
+
uv (batchsize, length, 1)
|
| 387 |
+
"""
|
| 388 |
+
|
| 389 |
+
def __init__(
|
| 390 |
+
self,
|
| 391 |
+
sampling_rate,
|
| 392 |
+
harmonic_num=0,
|
| 393 |
+
sine_amp=0.1,
|
| 394 |
+
add_noise_std=0.003,
|
| 395 |
+
voiced_threshod=0,
|
| 396 |
+
is_half=True,
|
| 397 |
+
):
|
| 398 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 399 |
+
|
| 400 |
+
self.sine_amp = sine_amp
|
| 401 |
+
self.noise_std = add_noise_std
|
| 402 |
+
self.is_half = is_half
|
| 403 |
+
# to produce sine waveforms
|
| 404 |
+
self.l_sin_gen = SineGen(
|
| 405 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
# to merge source harmonics into a single excitation
|
| 409 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 410 |
+
self.l_tanh = torch.nn.Tanh()
|
| 411 |
+
|
| 412 |
+
def forward(self, x, upp=None):
|
| 413 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
| 414 |
+
if self.is_half:
|
| 415 |
+
sine_wavs = sine_wavs.half()
|
| 416 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 417 |
+
return sine_merge, None, None # noise, uv
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
class GeneratorNSF(torch.nn.Module):
|
| 421 |
+
def __init__(
|
| 422 |
+
self,
|
| 423 |
+
initial_channel,
|
| 424 |
+
resblock,
|
| 425 |
+
resblock_kernel_sizes,
|
| 426 |
+
resblock_dilation_sizes,
|
| 427 |
+
upsample_rates,
|
| 428 |
+
upsample_initial_channel,
|
| 429 |
+
upsample_kernel_sizes,
|
| 430 |
+
gin_channels,
|
| 431 |
+
sr,
|
| 432 |
+
is_half=False,
|
| 433 |
+
):
|
| 434 |
+
super(GeneratorNSF, self).__init__()
|
| 435 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 436 |
+
self.num_upsamples = len(upsample_rates)
|
| 437 |
+
|
| 438 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 439 |
+
self.m_source = SourceModuleHnNSF(
|
| 440 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
| 441 |
+
)
|
| 442 |
+
self.noise_convs = nn.ModuleList()
|
| 443 |
+
self.conv_pre = Conv1d(
|
| 444 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 445 |
+
)
|
| 446 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 447 |
+
|
| 448 |
+
self.ups = nn.ModuleList()
|
| 449 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 450 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 451 |
+
self.ups.append(
|
| 452 |
+
weight_norm(
|
| 453 |
+
ConvTranspose1d(
|
| 454 |
+
upsample_initial_channel // (2**i),
|
| 455 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 456 |
+
k,
|
| 457 |
+
u,
|
| 458 |
+
padding=(k - u) // 2,
|
| 459 |
+
)
|
| 460 |
+
)
|
| 461 |
+
)
|
| 462 |
+
if i + 1 < len(upsample_rates):
|
| 463 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
| 464 |
+
self.noise_convs.append(
|
| 465 |
+
Conv1d(
|
| 466 |
+
1,
|
| 467 |
+
c_cur,
|
| 468 |
+
kernel_size=stride_f0 * 2,
|
| 469 |
+
stride=stride_f0,
|
| 470 |
+
padding=stride_f0 // 2,
|
| 471 |
+
)
|
| 472 |
+
)
|
| 473 |
+
else:
|
| 474 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 475 |
+
|
| 476 |
+
self.resblocks = nn.ModuleList()
|
| 477 |
+
for i in range(len(self.ups)):
|
| 478 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 479 |
+
for j, (k, d) in enumerate(
|
| 480 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 481 |
+
):
|
| 482 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 483 |
+
|
| 484 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 485 |
+
self.ups.apply(init_weights)
|
| 486 |
+
|
| 487 |
+
if gin_channels != 0:
|
| 488 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 489 |
+
|
| 490 |
+
self.upp = np.prod(upsample_rates)
|
| 491 |
+
|
| 492 |
+
def forward(self, x, f0, g=None):
|
| 493 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
| 494 |
+
har_source = har_source.transpose(1, 2)
|
| 495 |
+
x = self.conv_pre(x)
|
| 496 |
+
if g is not None:
|
| 497 |
+
x = x + self.cond(g)
|
| 498 |
+
|
| 499 |
+
for i in range(self.num_upsamples):
|
| 500 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 501 |
+
x = self.ups[i](x)
|
| 502 |
+
x_source = self.noise_convs[i](har_source)
|
| 503 |
+
x = x + x_source
|
| 504 |
+
xs = None
|
| 505 |
+
for j in range(self.num_kernels):
|
| 506 |
+
if xs is None:
|
| 507 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 508 |
+
else:
|
| 509 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 510 |
+
x = xs / self.num_kernels
|
| 511 |
+
x = F.leaky_relu(x)
|
| 512 |
+
x = self.conv_post(x)
|
| 513 |
+
x = torch.tanh(x)
|
| 514 |
+
return x
|
| 515 |
+
|
| 516 |
+
def remove_weight_norm(self):
|
| 517 |
+
for l in self.ups:
|
| 518 |
+
remove_weight_norm(l)
|
| 519 |
+
for l in self.resblocks:
|
| 520 |
+
l.remove_weight_norm()
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
sr2sr = {
|
| 524 |
+
"32k": 32000,
|
| 525 |
+
"40k": 40000,
|
| 526 |
+
"48k": 48000,
|
| 527 |
+
}
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
class SynthesizerTrnMs256NSFsidM(nn.Module):
|
| 531 |
+
def __init__(
|
| 532 |
+
self,
|
| 533 |
+
spec_channels,
|
| 534 |
+
segment_size,
|
| 535 |
+
inter_channels,
|
| 536 |
+
hidden_channels,
|
| 537 |
+
filter_channels,
|
| 538 |
+
n_heads,
|
| 539 |
+
n_layers,
|
| 540 |
+
kernel_size,
|
| 541 |
+
p_dropout,
|
| 542 |
+
resblock,
|
| 543 |
+
resblock_kernel_sizes,
|
| 544 |
+
resblock_dilation_sizes,
|
| 545 |
+
upsample_rates,
|
| 546 |
+
upsample_initial_channel,
|
| 547 |
+
upsample_kernel_sizes,
|
| 548 |
+
spk_embed_dim,
|
| 549 |
+
gin_channels,
|
| 550 |
+
sr,
|
| 551 |
+
**kwargs
|
| 552 |
+
):
|
| 553 |
+
super().__init__()
|
| 554 |
+
if type(sr) == type("strr"):
|
| 555 |
+
sr = sr2sr[sr]
|
| 556 |
+
self.spec_channels = spec_channels
|
| 557 |
+
self.inter_channels = inter_channels
|
| 558 |
+
self.hidden_channels = hidden_channels
|
| 559 |
+
self.filter_channels = filter_channels
|
| 560 |
+
self.n_heads = n_heads
|
| 561 |
+
self.n_layers = n_layers
|
| 562 |
+
self.kernel_size = kernel_size
|
| 563 |
+
self.p_dropout = p_dropout
|
| 564 |
+
self.resblock = resblock
|
| 565 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 566 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 567 |
+
self.upsample_rates = upsample_rates
|
| 568 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 569 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 570 |
+
self.segment_size = segment_size
|
| 571 |
+
self.gin_channels = gin_channels
|
| 572 |
+
# self.hop_length = hop_length#
|
| 573 |
+
self.spk_embed_dim = spk_embed_dim
|
| 574 |
+
self.enc_p = TextEncoder256(
|
| 575 |
+
inter_channels,
|
| 576 |
+
hidden_channels,
|
| 577 |
+
filter_channels,
|
| 578 |
+
n_heads,
|
| 579 |
+
n_layers,
|
| 580 |
+
kernel_size,
|
| 581 |
+
p_dropout,
|
| 582 |
+
)
|
| 583 |
+
self.dec = GeneratorNSF(
|
| 584 |
+
inter_channels,
|
| 585 |
+
resblock,
|
| 586 |
+
resblock_kernel_sizes,
|
| 587 |
+
resblock_dilation_sizes,
|
| 588 |
+
upsample_rates,
|
| 589 |
+
upsample_initial_channel,
|
| 590 |
+
upsample_kernel_sizes,
|
| 591 |
+
gin_channels=gin_channels,
|
| 592 |
+
sr=sr,
|
| 593 |
+
is_half=kwargs["is_half"],
|
| 594 |
+
)
|
| 595 |
+
self.enc_q = PosteriorEncoder(
|
| 596 |
+
spec_channels,
|
| 597 |
+
inter_channels,
|
| 598 |
+
hidden_channels,
|
| 599 |
+
5,
|
| 600 |
+
1,
|
| 601 |
+
16,
|
| 602 |
+
gin_channels=gin_channels,
|
| 603 |
+
)
|
| 604 |
+
self.flow = ResidualCouplingBlock(
|
| 605 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 606 |
+
)
|
| 607 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 608 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 609 |
+
|
| 610 |
+
def remove_weight_norm(self):
|
| 611 |
+
self.dec.remove_weight_norm()
|
| 612 |
+
self.flow.remove_weight_norm()
|
| 613 |
+
self.enc_q.remove_weight_norm()
|
| 614 |
+
|
| 615 |
+
def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
|
| 616 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
| 617 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 618 |
+
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
| 619 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
| 620 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
| 621 |
+
return o
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
| 625 |
+
"""
|
| 626 |
+
Synthesizer for Training
|
| 627 |
+
"""
|
| 628 |
+
|
| 629 |
+
def __init__(
|
| 630 |
+
self,
|
| 631 |
+
spec_channels,
|
| 632 |
+
segment_size,
|
| 633 |
+
inter_channels,
|
| 634 |
+
hidden_channels,
|
| 635 |
+
filter_channels,
|
| 636 |
+
n_heads,
|
| 637 |
+
n_layers,
|
| 638 |
+
kernel_size,
|
| 639 |
+
p_dropout,
|
| 640 |
+
resblock,
|
| 641 |
+
resblock_kernel_sizes,
|
| 642 |
+
resblock_dilation_sizes,
|
| 643 |
+
upsample_rates,
|
| 644 |
+
upsample_initial_channel,
|
| 645 |
+
upsample_kernel_sizes,
|
| 646 |
+
spk_embed_dim,
|
| 647 |
+
# hop_length,
|
| 648 |
+
gin_channels=0,
|
| 649 |
+
use_sdp=True,
|
| 650 |
+
**kwargs
|
| 651 |
+
):
|
| 652 |
+
super().__init__()
|
| 653 |
+
self.spec_channels = spec_channels
|
| 654 |
+
self.inter_channels = inter_channels
|
| 655 |
+
self.hidden_channels = hidden_channels
|
| 656 |
+
self.filter_channels = filter_channels
|
| 657 |
+
self.n_heads = n_heads
|
| 658 |
+
self.n_layers = n_layers
|
| 659 |
+
self.kernel_size = kernel_size
|
| 660 |
+
self.p_dropout = p_dropout
|
| 661 |
+
self.resblock = resblock
|
| 662 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 663 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 664 |
+
self.upsample_rates = upsample_rates
|
| 665 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 666 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 667 |
+
self.segment_size = segment_size
|
| 668 |
+
self.gin_channels = gin_channels
|
| 669 |
+
# self.hop_length = hop_length#
|
| 670 |
+
self.spk_embed_dim = spk_embed_dim
|
| 671 |
+
self.enc_p = TextEncoder256Sim(
|
| 672 |
+
inter_channels,
|
| 673 |
+
hidden_channels,
|
| 674 |
+
filter_channels,
|
| 675 |
+
n_heads,
|
| 676 |
+
n_layers,
|
| 677 |
+
kernel_size,
|
| 678 |
+
p_dropout,
|
| 679 |
+
)
|
| 680 |
+
self.dec = GeneratorNSF(
|
| 681 |
+
inter_channels,
|
| 682 |
+
resblock,
|
| 683 |
+
resblock_kernel_sizes,
|
| 684 |
+
resblock_dilation_sizes,
|
| 685 |
+
upsample_rates,
|
| 686 |
+
upsample_initial_channel,
|
| 687 |
+
upsample_kernel_sizes,
|
| 688 |
+
gin_channels=gin_channels,
|
| 689 |
+
is_half=kwargs["is_half"],
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
self.flow = ResidualCouplingBlock(
|
| 693 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
| 694 |
+
)
|
| 695 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
| 696 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
| 697 |
+
|
| 698 |
+
def remove_weight_norm(self):
|
| 699 |
+
self.dec.remove_weight_norm()
|
| 700 |
+
self.flow.remove_weight_norm()
|
| 701 |
+
self.enc_q.remove_weight_norm()
|
| 702 |
+
|
| 703 |
+
def forward(
|
| 704 |
+
self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
|
| 705 |
+
): # y是spec不需要了现在
|
| 706 |
+
g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
| 707 |
+
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
| 708 |
+
x = self.flow(x, x_mask, g=g, reverse=True)
|
| 709 |
+
o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
|
| 710 |
+
return o
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 714 |
+
def __init__(self, use_spectral_norm=False):
|
| 715 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 716 |
+
periods = [2, 3, 5, 7, 11, 17]
|
| 717 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
| 718 |
+
|
| 719 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 720 |
+
discs = discs + [
|
| 721 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 722 |
+
]
|
| 723 |
+
self.discriminators = nn.ModuleList(discs)
|
| 724 |
+
|
| 725 |
+
def forward(self, y, y_hat):
|
| 726 |
+
y_d_rs = [] #
|
| 727 |
+
y_d_gs = []
|
| 728 |
+
fmap_rs = []
|
| 729 |
+
fmap_gs = []
|
| 730 |
+
for i, d in enumerate(self.discriminators):
|
| 731 |
+
y_d_r, fmap_r = d(y)
|
| 732 |
+
y_d_g, fmap_g = d(y_hat)
|
| 733 |
+
# for j in range(len(fmap_r)):
|
| 734 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
| 735 |
+
y_d_rs.append(y_d_r)
|
| 736 |
+
y_d_gs.append(y_d_g)
|
| 737 |
+
fmap_rs.append(fmap_r)
|
| 738 |
+
fmap_gs.append(fmap_g)
|
| 739 |
+
|
| 740 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 741 |
+
|
| 742 |
+
|
| 743 |
+
class DiscriminatorS(torch.nn.Module):
|
| 744 |
+
def __init__(self, use_spectral_norm=False):
|
| 745 |
+
super(DiscriminatorS, self).__init__()
|
| 746 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 747 |
+
self.convs = nn.ModuleList(
|
| 748 |
+
[
|
| 749 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 750 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 751 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 752 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 753 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 754 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 755 |
+
]
|
| 756 |
+
)
|
| 757 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 758 |
+
|
| 759 |
+
def forward(self, x):
|
| 760 |
+
fmap = []
|
| 761 |
+
|
| 762 |
+
for l in self.convs:
|
| 763 |
+
x = l(x)
|
| 764 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 765 |
+
fmap.append(x)
|
| 766 |
+
x = self.conv_post(x)
|
| 767 |
+
fmap.append(x)
|
| 768 |
+
x = torch.flatten(x, 1, -1)
|
| 769 |
+
|
| 770 |
+
return x, fmap
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
class DiscriminatorP(torch.nn.Module):
|
| 774 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 775 |
+
super(DiscriminatorP, self).__init__()
|
| 776 |
+
self.period = period
|
| 777 |
+
self.use_spectral_norm = use_spectral_norm
|
| 778 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
| 779 |
+
self.convs = nn.ModuleList(
|
| 780 |
+
[
|
| 781 |
+
norm_f(
|
| 782 |
+
Conv2d(
|
| 783 |
+
1,
|
| 784 |
+
32,
|
| 785 |
+
(kernel_size, 1),
|
| 786 |
+
(stride, 1),
|
| 787 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 788 |
+
)
|
| 789 |
+
),
|
| 790 |
+
norm_f(
|
| 791 |
+
Conv2d(
|
| 792 |
+
32,
|
| 793 |
+
128,
|
| 794 |
+
(kernel_size, 1),
|
| 795 |
+
(stride, 1),
|
| 796 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 797 |
+
)
|
| 798 |
+
),
|
| 799 |
+
norm_f(
|
| 800 |
+
Conv2d(
|
| 801 |
+
128,
|
| 802 |
+
512,
|
| 803 |
+
(kernel_size, 1),
|
| 804 |
+
(stride, 1),
|
| 805 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 806 |
+
)
|
| 807 |
+
),
|
| 808 |
+
norm_f(
|
| 809 |
+
Conv2d(
|
| 810 |
+
512,
|
| 811 |
+
1024,
|
| 812 |
+
(kernel_size, 1),
|
| 813 |
+
(stride, 1),
|
| 814 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 815 |
+
)
|
| 816 |
+
),
|
| 817 |
+
norm_f(
|
| 818 |
+
Conv2d(
|
| 819 |
+
1024,
|
| 820 |
+
1024,
|
| 821 |
+
(kernel_size, 1),
|
| 822 |
+
1,
|
| 823 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 824 |
+
)
|
| 825 |
+
),
|
| 826 |
+
]
|
| 827 |
+
)
|
| 828 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 829 |
+
|
| 830 |
+
def forward(self, x):
|
| 831 |
+
fmap = []
|
| 832 |
+
|
| 833 |
+
# 1d to 2d
|
| 834 |
+
b, c, t = x.shape
|
| 835 |
+
if t % self.period != 0: # pad first
|
| 836 |
+
n_pad = self.period - (t % self.period)
|
| 837 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 838 |
+
t = t + n_pad
|
| 839 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 840 |
+
|
| 841 |
+
for l in self.convs:
|
| 842 |
+
x = l(x)
|
| 843 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 844 |
+
fmap.append(x)
|
| 845 |
+
x = self.conv_post(x)
|
| 846 |
+
fmap.append(x)
|
| 847 |
+
x = torch.flatten(x, 1, -1)
|
| 848 |
+
|
| 849 |
+
return x, fmap
|
infer_pack/modules.py
ADDED
|
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import scipy
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
|
| 9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
| 11 |
+
|
| 12 |
+
from infer_pack import commons
|
| 13 |
+
from infer_pack.commons import init_weights, get_padding
|
| 14 |
+
from infer_pack.transforms import piecewise_rational_quadratic_transform
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
LRELU_SLOPE = 0.1
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class LayerNorm(nn.Module):
|
| 21 |
+
def __init__(self, channels, eps=1e-5):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.channels = channels
|
| 24 |
+
self.eps = eps
|
| 25 |
+
|
| 26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x = x.transpose(1, -1)
|
| 31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 32 |
+
return x.transpose(1, -1)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ConvReluNorm(nn.Module):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
in_channels,
|
| 39 |
+
hidden_channels,
|
| 40 |
+
out_channels,
|
| 41 |
+
kernel_size,
|
| 42 |
+
n_layers,
|
| 43 |
+
p_dropout,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.in_channels = in_channels
|
| 47 |
+
self.hidden_channels = hidden_channels
|
| 48 |
+
self.out_channels = out_channels
|
| 49 |
+
self.kernel_size = kernel_size
|
| 50 |
+
self.n_layers = n_layers
|
| 51 |
+
self.p_dropout = p_dropout
|
| 52 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
| 53 |
+
|
| 54 |
+
self.conv_layers = nn.ModuleList()
|
| 55 |
+
self.norm_layers = nn.ModuleList()
|
| 56 |
+
self.conv_layers.append(
|
| 57 |
+
nn.Conv1d(
|
| 58 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
| 59 |
+
)
|
| 60 |
+
)
|
| 61 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 62 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
| 63 |
+
for _ in range(n_layers - 1):
|
| 64 |
+
self.conv_layers.append(
|
| 65 |
+
nn.Conv1d(
|
| 66 |
+
hidden_channels,
|
| 67 |
+
hidden_channels,
|
| 68 |
+
kernel_size,
|
| 69 |
+
padding=kernel_size // 2,
|
| 70 |
+
)
|
| 71 |
+
)
|
| 72 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
| 73 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
| 74 |
+
self.proj.weight.data.zero_()
|
| 75 |
+
self.proj.bias.data.zero_()
|
| 76 |
+
|
| 77 |
+
def forward(self, x, x_mask):
|
| 78 |
+
x_org = x
|
| 79 |
+
for i in range(self.n_layers):
|
| 80 |
+
x = self.conv_layers[i](x * x_mask)
|
| 81 |
+
x = self.norm_layers[i](x)
|
| 82 |
+
x = self.relu_drop(x)
|
| 83 |
+
x = x_org + self.proj(x)
|
| 84 |
+
return x * x_mask
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class DDSConv(nn.Module):
|
| 88 |
+
"""
|
| 89 |
+
Dialted and Depth-Separable Convolution
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.channels = channels
|
| 95 |
+
self.kernel_size = kernel_size
|
| 96 |
+
self.n_layers = n_layers
|
| 97 |
+
self.p_dropout = p_dropout
|
| 98 |
+
|
| 99 |
+
self.drop = nn.Dropout(p_dropout)
|
| 100 |
+
self.convs_sep = nn.ModuleList()
|
| 101 |
+
self.convs_1x1 = nn.ModuleList()
|
| 102 |
+
self.norms_1 = nn.ModuleList()
|
| 103 |
+
self.norms_2 = nn.ModuleList()
|
| 104 |
+
for i in range(n_layers):
|
| 105 |
+
dilation = kernel_size**i
|
| 106 |
+
padding = (kernel_size * dilation - dilation) // 2
|
| 107 |
+
self.convs_sep.append(
|
| 108 |
+
nn.Conv1d(
|
| 109 |
+
channels,
|
| 110 |
+
channels,
|
| 111 |
+
kernel_size,
|
| 112 |
+
groups=channels,
|
| 113 |
+
dilation=dilation,
|
| 114 |
+
padding=padding,
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
| 118 |
+
self.norms_1.append(LayerNorm(channels))
|
| 119 |
+
self.norms_2.append(LayerNorm(channels))
|
| 120 |
+
|
| 121 |
+
def forward(self, x, x_mask, g=None):
|
| 122 |
+
if g is not None:
|
| 123 |
+
x = x + g
|
| 124 |
+
for i in range(self.n_layers):
|
| 125 |
+
y = self.convs_sep[i](x * x_mask)
|
| 126 |
+
y = self.norms_1[i](y)
|
| 127 |
+
y = F.gelu(y)
|
| 128 |
+
y = self.convs_1x1[i](y)
|
| 129 |
+
y = self.norms_2[i](y)
|
| 130 |
+
y = F.gelu(y)
|
| 131 |
+
y = self.drop(y)
|
| 132 |
+
x = x + y
|
| 133 |
+
return x * x_mask
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class WN(torch.nn.Module):
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
hidden_channels,
|
| 140 |
+
kernel_size,
|
| 141 |
+
dilation_rate,
|
| 142 |
+
n_layers,
|
| 143 |
+
gin_channels=0,
|
| 144 |
+
p_dropout=0,
|
| 145 |
+
):
|
| 146 |
+
super(WN, self).__init__()
|
| 147 |
+
assert kernel_size % 2 == 1
|
| 148 |
+
self.hidden_channels = hidden_channels
|
| 149 |
+
self.kernel_size = (kernel_size,)
|
| 150 |
+
self.dilation_rate = dilation_rate
|
| 151 |
+
self.n_layers = n_layers
|
| 152 |
+
self.gin_channels = gin_channels
|
| 153 |
+
self.p_dropout = p_dropout
|
| 154 |
+
|
| 155 |
+
self.in_layers = torch.nn.ModuleList()
|
| 156 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
| 157 |
+
self.drop = nn.Dropout(p_dropout)
|
| 158 |
+
|
| 159 |
+
if gin_channels != 0:
|
| 160 |
+
cond_layer = torch.nn.Conv1d(
|
| 161 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
| 162 |
+
)
|
| 163 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
| 164 |
+
|
| 165 |
+
for i in range(n_layers):
|
| 166 |
+
dilation = dilation_rate**i
|
| 167 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
| 168 |
+
in_layer = torch.nn.Conv1d(
|
| 169 |
+
hidden_channels,
|
| 170 |
+
2 * hidden_channels,
|
| 171 |
+
kernel_size,
|
| 172 |
+
dilation=dilation,
|
| 173 |
+
padding=padding,
|
| 174 |
+
)
|
| 175 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
| 176 |
+
self.in_layers.append(in_layer)
|
| 177 |
+
|
| 178 |
+
# last one is not necessary
|
| 179 |
+
if i < n_layers - 1:
|
| 180 |
+
res_skip_channels = 2 * hidden_channels
|
| 181 |
+
else:
|
| 182 |
+
res_skip_channels = hidden_channels
|
| 183 |
+
|
| 184 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
| 185 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
| 186 |
+
self.res_skip_layers.append(res_skip_layer)
|
| 187 |
+
|
| 188 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
| 189 |
+
output = torch.zeros_like(x)
|
| 190 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
| 191 |
+
|
| 192 |
+
if g is not None:
|
| 193 |
+
g = self.cond_layer(g)
|
| 194 |
+
|
| 195 |
+
for i in range(self.n_layers):
|
| 196 |
+
x_in = self.in_layers[i](x)
|
| 197 |
+
if g is not None:
|
| 198 |
+
cond_offset = i * 2 * self.hidden_channels
|
| 199 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
| 200 |
+
else:
|
| 201 |
+
g_l = torch.zeros_like(x_in)
|
| 202 |
+
|
| 203 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
| 204 |
+
acts = self.drop(acts)
|
| 205 |
+
|
| 206 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
| 207 |
+
if i < self.n_layers - 1:
|
| 208 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
| 209 |
+
x = (x + res_acts) * x_mask
|
| 210 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
| 211 |
+
else:
|
| 212 |
+
output = output + res_skip_acts
|
| 213 |
+
return output * x_mask
|
| 214 |
+
|
| 215 |
+
def remove_weight_norm(self):
|
| 216 |
+
if self.gin_channels != 0:
|
| 217 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
| 218 |
+
for l in self.in_layers:
|
| 219 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 220 |
+
for l in self.res_skip_layers:
|
| 221 |
+
torch.nn.utils.remove_weight_norm(l)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class ResBlock1(torch.nn.Module):
|
| 225 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
| 226 |
+
super(ResBlock1, self).__init__()
|
| 227 |
+
self.convs1 = nn.ModuleList(
|
| 228 |
+
[
|
| 229 |
+
weight_norm(
|
| 230 |
+
Conv1d(
|
| 231 |
+
channels,
|
| 232 |
+
channels,
|
| 233 |
+
kernel_size,
|
| 234 |
+
1,
|
| 235 |
+
dilation=dilation[0],
|
| 236 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 237 |
+
)
|
| 238 |
+
),
|
| 239 |
+
weight_norm(
|
| 240 |
+
Conv1d(
|
| 241 |
+
channels,
|
| 242 |
+
channels,
|
| 243 |
+
kernel_size,
|
| 244 |
+
1,
|
| 245 |
+
dilation=dilation[1],
|
| 246 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 247 |
+
)
|
| 248 |
+
),
|
| 249 |
+
weight_norm(
|
| 250 |
+
Conv1d(
|
| 251 |
+
channels,
|
| 252 |
+
channels,
|
| 253 |
+
kernel_size,
|
| 254 |
+
1,
|
| 255 |
+
dilation=dilation[2],
|
| 256 |
+
padding=get_padding(kernel_size, dilation[2]),
|
| 257 |
+
)
|
| 258 |
+
),
|
| 259 |
+
]
|
| 260 |
+
)
|
| 261 |
+
self.convs1.apply(init_weights)
|
| 262 |
+
|
| 263 |
+
self.convs2 = nn.ModuleList(
|
| 264 |
+
[
|
| 265 |
+
weight_norm(
|
| 266 |
+
Conv1d(
|
| 267 |
+
channels,
|
| 268 |
+
channels,
|
| 269 |
+
kernel_size,
|
| 270 |
+
1,
|
| 271 |
+
dilation=1,
|
| 272 |
+
padding=get_padding(kernel_size, 1),
|
| 273 |
+
)
|
| 274 |
+
),
|
| 275 |
+
weight_norm(
|
| 276 |
+
Conv1d(
|
| 277 |
+
channels,
|
| 278 |
+
channels,
|
| 279 |
+
kernel_size,
|
| 280 |
+
1,
|
| 281 |
+
dilation=1,
|
| 282 |
+
padding=get_padding(kernel_size, 1),
|
| 283 |
+
)
|
| 284 |
+
),
|
| 285 |
+
weight_norm(
|
| 286 |
+
Conv1d(
|
| 287 |
+
channels,
|
| 288 |
+
channels,
|
| 289 |
+
kernel_size,
|
| 290 |
+
1,
|
| 291 |
+
dilation=1,
|
| 292 |
+
padding=get_padding(kernel_size, 1),
|
| 293 |
+
)
|
| 294 |
+
),
|
| 295 |
+
]
|
| 296 |
+
)
|
| 297 |
+
self.convs2.apply(init_weights)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, x_mask=None):
|
| 300 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
| 301 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 302 |
+
if x_mask is not None:
|
| 303 |
+
xt = xt * x_mask
|
| 304 |
+
xt = c1(xt)
|
| 305 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
| 306 |
+
if x_mask is not None:
|
| 307 |
+
xt = xt * x_mask
|
| 308 |
+
xt = c2(xt)
|
| 309 |
+
x = xt + x
|
| 310 |
+
if x_mask is not None:
|
| 311 |
+
x = x * x_mask
|
| 312 |
+
return x
|
| 313 |
+
|
| 314 |
+
def remove_weight_norm(self):
|
| 315 |
+
for l in self.convs1:
|
| 316 |
+
remove_weight_norm(l)
|
| 317 |
+
for l in self.convs2:
|
| 318 |
+
remove_weight_norm(l)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
class ResBlock2(torch.nn.Module):
|
| 322 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
| 323 |
+
super(ResBlock2, self).__init__()
|
| 324 |
+
self.convs = nn.ModuleList(
|
| 325 |
+
[
|
| 326 |
+
weight_norm(
|
| 327 |
+
Conv1d(
|
| 328 |
+
channels,
|
| 329 |
+
channels,
|
| 330 |
+
kernel_size,
|
| 331 |
+
1,
|
| 332 |
+
dilation=dilation[0],
|
| 333 |
+
padding=get_padding(kernel_size, dilation[0]),
|
| 334 |
+
)
|
| 335 |
+
),
|
| 336 |
+
weight_norm(
|
| 337 |
+
Conv1d(
|
| 338 |
+
channels,
|
| 339 |
+
channels,
|
| 340 |
+
kernel_size,
|
| 341 |
+
1,
|
| 342 |
+
dilation=dilation[1],
|
| 343 |
+
padding=get_padding(kernel_size, dilation[1]),
|
| 344 |
+
)
|
| 345 |
+
),
|
| 346 |
+
]
|
| 347 |
+
)
|
| 348 |
+
self.convs.apply(init_weights)
|
| 349 |
+
|
| 350 |
+
def forward(self, x, x_mask=None):
|
| 351 |
+
for c in self.convs:
|
| 352 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
| 353 |
+
if x_mask is not None:
|
| 354 |
+
xt = xt * x_mask
|
| 355 |
+
xt = c(xt)
|
| 356 |
+
x = xt + x
|
| 357 |
+
if x_mask is not None:
|
| 358 |
+
x = x * x_mask
|
| 359 |
+
return x
|
| 360 |
+
|
| 361 |
+
def remove_weight_norm(self):
|
| 362 |
+
for l in self.convs:
|
| 363 |
+
remove_weight_norm(l)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
class Log(nn.Module):
|
| 367 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 368 |
+
if not reverse:
|
| 369 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
| 370 |
+
logdet = torch.sum(-y, [1, 2])
|
| 371 |
+
return y, logdet
|
| 372 |
+
else:
|
| 373 |
+
x = torch.exp(x) * x_mask
|
| 374 |
+
return x
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class Flip(nn.Module):
|
| 378 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
| 379 |
+
x = torch.flip(x, [1])
|
| 380 |
+
if not reverse:
|
| 381 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
| 382 |
+
return x, logdet
|
| 383 |
+
else:
|
| 384 |
+
return x
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class ElementwiseAffine(nn.Module):
|
| 388 |
+
def __init__(self, channels):
|
| 389 |
+
super().__init__()
|
| 390 |
+
self.channels = channels
|
| 391 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
| 392 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
| 393 |
+
|
| 394 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
| 395 |
+
if not reverse:
|
| 396 |
+
y = self.m + torch.exp(self.logs) * x
|
| 397 |
+
y = y * x_mask
|
| 398 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
| 399 |
+
return y, logdet
|
| 400 |
+
else:
|
| 401 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
| 402 |
+
return x
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class ResidualCouplingLayer(nn.Module):
|
| 406 |
+
def __init__(
|
| 407 |
+
self,
|
| 408 |
+
channels,
|
| 409 |
+
hidden_channels,
|
| 410 |
+
kernel_size,
|
| 411 |
+
dilation_rate,
|
| 412 |
+
n_layers,
|
| 413 |
+
p_dropout=0,
|
| 414 |
+
gin_channels=0,
|
| 415 |
+
mean_only=False,
|
| 416 |
+
):
|
| 417 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
| 418 |
+
super().__init__()
|
| 419 |
+
self.channels = channels
|
| 420 |
+
self.hidden_channels = hidden_channels
|
| 421 |
+
self.kernel_size = kernel_size
|
| 422 |
+
self.dilation_rate = dilation_rate
|
| 423 |
+
self.n_layers = n_layers
|
| 424 |
+
self.half_channels = channels // 2
|
| 425 |
+
self.mean_only = mean_only
|
| 426 |
+
|
| 427 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
| 428 |
+
self.enc = WN(
|
| 429 |
+
hidden_channels,
|
| 430 |
+
kernel_size,
|
| 431 |
+
dilation_rate,
|
| 432 |
+
n_layers,
|
| 433 |
+
p_dropout=p_dropout,
|
| 434 |
+
gin_channels=gin_channels,
|
| 435 |
+
)
|
| 436 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
| 437 |
+
self.post.weight.data.zero_()
|
| 438 |
+
self.post.bias.data.zero_()
|
| 439 |
+
|
| 440 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 441 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 442 |
+
h = self.pre(x0) * x_mask
|
| 443 |
+
h = self.enc(h, x_mask, g=g)
|
| 444 |
+
stats = self.post(h) * x_mask
|
| 445 |
+
if not self.mean_only:
|
| 446 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
| 447 |
+
else:
|
| 448 |
+
m = stats
|
| 449 |
+
logs = torch.zeros_like(m)
|
| 450 |
+
|
| 451 |
+
if not reverse:
|
| 452 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
| 453 |
+
x = torch.cat([x0, x1], 1)
|
| 454 |
+
logdet = torch.sum(logs, [1, 2])
|
| 455 |
+
return x, logdet
|
| 456 |
+
else:
|
| 457 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
| 458 |
+
x = torch.cat([x0, x1], 1)
|
| 459 |
+
return x
|
| 460 |
+
|
| 461 |
+
def remove_weight_norm(self):
|
| 462 |
+
self.enc.remove_weight_norm()
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class ConvFlow(nn.Module):
|
| 466 |
+
def __init__(
|
| 467 |
+
self,
|
| 468 |
+
in_channels,
|
| 469 |
+
filter_channels,
|
| 470 |
+
kernel_size,
|
| 471 |
+
n_layers,
|
| 472 |
+
num_bins=10,
|
| 473 |
+
tail_bound=5.0,
|
| 474 |
+
):
|
| 475 |
+
super().__init__()
|
| 476 |
+
self.in_channels = in_channels
|
| 477 |
+
self.filter_channels = filter_channels
|
| 478 |
+
self.kernel_size = kernel_size
|
| 479 |
+
self.n_layers = n_layers
|
| 480 |
+
self.num_bins = num_bins
|
| 481 |
+
self.tail_bound = tail_bound
|
| 482 |
+
self.half_channels = in_channels // 2
|
| 483 |
+
|
| 484 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
| 485 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
| 486 |
+
self.proj = nn.Conv1d(
|
| 487 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
| 488 |
+
)
|
| 489 |
+
self.proj.weight.data.zero_()
|
| 490 |
+
self.proj.bias.data.zero_()
|
| 491 |
+
|
| 492 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 493 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
| 494 |
+
h = self.pre(x0)
|
| 495 |
+
h = self.convs(h, x_mask, g=g)
|
| 496 |
+
h = self.proj(h) * x_mask
|
| 497 |
+
|
| 498 |
+
b, c, t = x0.shape
|
| 499 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
| 500 |
+
|
| 501 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
| 502 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
| 503 |
+
self.filter_channels
|
| 504 |
+
)
|
| 505 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
| 506 |
+
|
| 507 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
| 508 |
+
x1,
|
| 509 |
+
unnormalized_widths,
|
| 510 |
+
unnormalized_heights,
|
| 511 |
+
unnormalized_derivatives,
|
| 512 |
+
inverse=reverse,
|
| 513 |
+
tails="linear",
|
| 514 |
+
tail_bound=self.tail_bound,
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
| 518 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
| 519 |
+
if not reverse:
|
| 520 |
+
return x, logdet
|
| 521 |
+
else:
|
| 522 |
+
return x
|
infer_pack/transforms.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import functional as F
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
| 8 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
| 9 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def piecewise_rational_quadratic_transform(
|
| 13 |
+
inputs,
|
| 14 |
+
unnormalized_widths,
|
| 15 |
+
unnormalized_heights,
|
| 16 |
+
unnormalized_derivatives,
|
| 17 |
+
inverse=False,
|
| 18 |
+
tails=None,
|
| 19 |
+
tail_bound=1.0,
|
| 20 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 21 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 22 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 23 |
+
):
|
| 24 |
+
if tails is None:
|
| 25 |
+
spline_fn = rational_quadratic_spline
|
| 26 |
+
spline_kwargs = {}
|
| 27 |
+
else:
|
| 28 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
| 29 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
| 30 |
+
|
| 31 |
+
outputs, logabsdet = spline_fn(
|
| 32 |
+
inputs=inputs,
|
| 33 |
+
unnormalized_widths=unnormalized_widths,
|
| 34 |
+
unnormalized_heights=unnormalized_heights,
|
| 35 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
| 36 |
+
inverse=inverse,
|
| 37 |
+
min_bin_width=min_bin_width,
|
| 38 |
+
min_bin_height=min_bin_height,
|
| 39 |
+
min_derivative=min_derivative,
|
| 40 |
+
**spline_kwargs
|
| 41 |
+
)
|
| 42 |
+
return outputs, logabsdet
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
| 46 |
+
bin_locations[..., -1] += eps
|
| 47 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def unconstrained_rational_quadratic_spline(
|
| 51 |
+
inputs,
|
| 52 |
+
unnormalized_widths,
|
| 53 |
+
unnormalized_heights,
|
| 54 |
+
unnormalized_derivatives,
|
| 55 |
+
inverse=False,
|
| 56 |
+
tails="linear",
|
| 57 |
+
tail_bound=1.0,
|
| 58 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 59 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 60 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 61 |
+
):
|
| 62 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
| 63 |
+
outside_interval_mask = ~inside_interval_mask
|
| 64 |
+
|
| 65 |
+
outputs = torch.zeros_like(inputs)
|
| 66 |
+
logabsdet = torch.zeros_like(inputs)
|
| 67 |
+
|
| 68 |
+
if tails == "linear":
|
| 69 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
| 70 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
| 71 |
+
unnormalized_derivatives[..., 0] = constant
|
| 72 |
+
unnormalized_derivatives[..., -1] = constant
|
| 73 |
+
|
| 74 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
| 75 |
+
logabsdet[outside_interval_mask] = 0
|
| 76 |
+
else:
|
| 77 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
| 78 |
+
|
| 79 |
+
(
|
| 80 |
+
outputs[inside_interval_mask],
|
| 81 |
+
logabsdet[inside_interval_mask],
|
| 82 |
+
) = rational_quadratic_spline(
|
| 83 |
+
inputs=inputs[inside_interval_mask],
|
| 84 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
| 85 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
| 86 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
| 87 |
+
inverse=inverse,
|
| 88 |
+
left=-tail_bound,
|
| 89 |
+
right=tail_bound,
|
| 90 |
+
bottom=-tail_bound,
|
| 91 |
+
top=tail_bound,
|
| 92 |
+
min_bin_width=min_bin_width,
|
| 93 |
+
min_bin_height=min_bin_height,
|
| 94 |
+
min_derivative=min_derivative,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
return outputs, logabsdet
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def rational_quadratic_spline(
|
| 101 |
+
inputs,
|
| 102 |
+
unnormalized_widths,
|
| 103 |
+
unnormalized_heights,
|
| 104 |
+
unnormalized_derivatives,
|
| 105 |
+
inverse=False,
|
| 106 |
+
left=0.0,
|
| 107 |
+
right=1.0,
|
| 108 |
+
bottom=0.0,
|
| 109 |
+
top=1.0,
|
| 110 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
| 111 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
| 112 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
| 113 |
+
):
|
| 114 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
| 115 |
+
raise ValueError("Input to a transform is not within its domain")
|
| 116 |
+
|
| 117 |
+
num_bins = unnormalized_widths.shape[-1]
|
| 118 |
+
|
| 119 |
+
if min_bin_width * num_bins > 1.0:
|
| 120 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
| 121 |
+
if min_bin_height * num_bins > 1.0:
|
| 122 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
| 123 |
+
|
| 124 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
| 125 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
| 126 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
| 127 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
| 128 |
+
cumwidths = (right - left) * cumwidths + left
|
| 129 |
+
cumwidths[..., 0] = left
|
| 130 |
+
cumwidths[..., -1] = right
|
| 131 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
| 132 |
+
|
| 133 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
| 134 |
+
|
| 135 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
| 136 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
| 137 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
| 138 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
| 139 |
+
cumheights = (top - bottom) * cumheights + bottom
|
| 140 |
+
cumheights[..., 0] = bottom
|
| 141 |
+
cumheights[..., -1] = top
|
| 142 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
| 143 |
+
|
| 144 |
+
if inverse:
|
| 145 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
| 146 |
+
else:
|
| 147 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
| 148 |
+
|
| 149 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
| 150 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
| 151 |
+
|
| 152 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
| 153 |
+
delta = heights / widths
|
| 154 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
| 155 |
+
|
| 156 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
| 157 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
| 158 |
+
|
| 159 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
| 160 |
+
|
| 161 |
+
if inverse:
|
| 162 |
+
a = (inputs - input_cumheights) * (
|
| 163 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 164 |
+
) + input_heights * (input_delta - input_derivatives)
|
| 165 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
| 166 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
| 167 |
+
)
|
| 168 |
+
c = -input_delta * (inputs - input_cumheights)
|
| 169 |
+
|
| 170 |
+
discriminant = b.pow(2) - 4 * a * c
|
| 171 |
+
assert (discriminant >= 0).all()
|
| 172 |
+
|
| 173 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
| 174 |
+
outputs = root * input_bin_widths + input_cumwidths
|
| 175 |
+
|
| 176 |
+
theta_one_minus_theta = root * (1 - root)
|
| 177 |
+
denominator = input_delta + (
|
| 178 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 179 |
+
* theta_one_minus_theta
|
| 180 |
+
)
|
| 181 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 182 |
+
input_derivatives_plus_one * root.pow(2)
|
| 183 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 184 |
+
+ input_derivatives * (1 - root).pow(2)
|
| 185 |
+
)
|
| 186 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 187 |
+
|
| 188 |
+
return outputs, -logabsdet
|
| 189 |
+
else:
|
| 190 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
| 191 |
+
theta_one_minus_theta = theta * (1 - theta)
|
| 192 |
+
|
| 193 |
+
numerator = input_heights * (
|
| 194 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
| 195 |
+
)
|
| 196 |
+
denominator = input_delta + (
|
| 197 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
| 198 |
+
* theta_one_minus_theta
|
| 199 |
+
)
|
| 200 |
+
outputs = input_cumheights + numerator / denominator
|
| 201 |
+
|
| 202 |
+
derivative_numerator = input_delta.pow(2) * (
|
| 203 |
+
input_derivatives_plus_one * theta.pow(2)
|
| 204 |
+
+ 2 * input_delta * theta_one_minus_theta
|
| 205 |
+
+ input_derivatives * (1 - theta).pow(2)
|
| 206 |
+
)
|
| 207 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
| 208 |
+
|
| 209 |
+
return outputs, logabsdet
|
model/alpha/Alpha2333333.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ab58c53436b5bf37c44db159408c1ff23cc8fbaf586dd20cc363127a11ed040
|
| 3 |
+
size 55093677
|
model/alpha/added_IVF1322_Flat_nprobe_1.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b28d20605fef0dcd0e11c4b108962fba6795321768cfdb4b66bad7fa26a8aec0
|
| 3 |
+
size 54607387
|
model/alpha/alpha.png
ADDED
|
model/alpha/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "Alpha2333333.pth",
|
| 3 |
+
"feat_index": "added_IVF1322_Flat_nprobe_1.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Alpha",
|
| 7 |
+
"author": "Fr",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "Trained idk",
|
| 10 |
+
"icon": "alpha.png"
|
| 11 |
+
}
|
model/arianagrande/Ariana.png
ADDED
|
model/arianagrande/added_IVF1033_Flat_nprobe_1_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a47bef476fc29dde668b2727ad4ba3dbcf526a62bcea85204595d28b0b854bbb
|
| 3 |
+
size 127336579
|
model/arianagrande/arianagrande.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f8199a3f13fed7d6f71d98e89c8bf49cbc00701e0d6581383e320997fd8ed20
|
| 3 |
+
size 55226492
|
model/arianagrande/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "arianagrande.pth",
|
| 3 |
+
"feat_index": "added_IVF1033_Flat_nprobe_1_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Ariana Grande",
|
| 7 |
+
"author": "Arithyst",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "7 minute dataset (All of the dataset are from her Pro-Tools Dataset), Trained in RVC v2, Crepe Hop Length - 30",
|
| 10 |
+
"icon": "Ariana.png"
|
| 11 |
+
}
|
model/biden/added_IVF2606_Flat_nprobe_1_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1394a20989b10224498789f75ff8ef0dcf4a76e3de5f09a7e04ad9ac3bdd633
|
| 3 |
+
size 321167139
|
model/biden/biden.png
ADDED
|
model/biden/biden.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4efff69fc3e2b6a5d0b949f6220c6b159cb83a996c4ac2d81510502f4032a961
|
| 3 |
+
size 55225574
|
model/biden/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "biden.pth",
|
| 3 |
+
"feat_index": "added_IVF2606_Flat_nprobe_1_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Joe biden",
|
| 7 |
+
"author": "Week old roadkill",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "Trained on ~32 mins of speeches, silence truncated, crepe - 64, epochs - 300",
|
| 10 |
+
"icon": "biden.png"
|
| 11 |
+
}
|
model/bob/Sponge.png
ADDED
|
model/bob/added_IVF3536_Flat_nprobe_1_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8483147b32a68613b9c72ca64dc79b3575fcd9d6d3e05fd109af4efeabd26259
|
| 3 |
+
size 435669219
|
model/bob/bobsponge.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3fa5a81d398f02225f19295e199c6508e8b788ed56ea6807d73433c91386483
|
| 3 |
+
size 55229246
|
model/bob/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "bobsponge.pth",
|
| 3 |
+
"feat_index": "added_IVF3536_Flat_nprobe_1_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Bob Sponge",
|
| 7 |
+
"author": "Lüh Minion",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "This was trained on over 40 minutes of audio, using songs sang by SpongeBob as well as video game voice clips. This was trained using the crepe method, 64 HOP, on the v2 model architecture ",
|
| 10 |
+
"icon": "Sponge.png"
|
| 11 |
+
}
|
model/gambino/Hamza.png
ADDED
|
Git LFS Details
|
model/gambino/added_IVF536_Flat_nprobe_1.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fec199346c7f78501922a3ed9a6c11942bea45165ef88fc90f250d1cb25a6e96
|
| 3 |
+
size 22160275
|
model/gambino/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "gambino.pth",
|
| 3 |
+
"feat_index": "added_IVF536_Flat_nprobe_1.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Gambino",
|
| 7 |
+
"author": "Meganini",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "TEst",
|
| 10 |
+
"icon": "Hamza.png"
|
| 11 |
+
}
|
model/gambino/gambino.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd8aa0f49fef50b36a2628608e555548c080a9838e8ff216b2dfd42ae4dfc851
|
| 3 |
+
size 55028048
|
model/hamza/Hamza.png
ADDED
|
Git LFS Details
|
model/hamza/added_IVF1506_Flat_nprobe_1.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e3b562448b171663179696f0987ccf86ab953aff54204e875e5edc83ef3dafd
|
| 3 |
+
size 62181235
|
model/hamza/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "hamza.pth",
|
| 3 |
+
"feat_index": "added_IVF1506_Flat_nprobe_1.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Hamza",
|
| 7 |
+
"author": "Meganini",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "Epochs - 700",
|
| 10 |
+
"icon": "Hamza.png"
|
| 11 |
+
}
|
model/hamza/hamza.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a8950ddc8c328c30aa504ef51c0d8612bdc542206147b2ffa33706d0d44ecec
|
| 3 |
+
size 55027589
|
model/macmiller/added_IVF2124_Flat_nprobe_1_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a83907d49984646512ee119fb5ee8e2402d45795c8d7244981820ce6d14dc11
|
| 3 |
+
size 261741619
|
model/macmiller/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "macmillerv3.pth",
|
| 3 |
+
"feat_index": "added_IVF2124_Flat_nprobe_1_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "MacMiller",
|
| 7 |
+
"source": "ALL",
|
| 8 |
+
"author": "HZY",
|
| 9 |
+
"note": "Trained on Crepe, 28 minute data-set, 300 epochs",
|
| 10 |
+
"icon": "macmiller.png"
|
| 11 |
+
}
|
model/macmiller/macmiller.png
ADDED
|
Git LFS Details
|
model/macmiller/macmillerv3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c4b2e20687c0288c79b1ddbb07107c9c00e458af46f2e62f6c713328a459ae3e
|
| 3 |
+
size 55225115
|
model/mickaeljackson/Mickael.png
ADDED
|
model/mickaeljackson/added_IVF1448_Flat_nprobe_1_v2.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f98424e9a36aa1fc3f753ba1fcded6f6992c8094cd383576c5af17aa8c9d301
|
| 3 |
+
size 178421459
|
model/mickaeljackson/config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "michael-jackson.pth",
|
| 3 |
+
"feat_index": "added_IVF1448_Flat_nprobe_1_v2.index",
|
| 4 |
+
"speaker_id": 0,
|
| 5 |
+
|
| 6 |
+
"name": "Mickael Jackson",
|
| 7 |
+
"author": "REU Music",
|
| 8 |
+
"source": "ALL",
|
| 9 |
+
"note": "Trained by me with a 20 minute dataset, based on ERA Off the Wall + Thriller",
|
| 10 |
+
"icon": "Mickael.png"
|
| 11 |
+
}
|
model/mickaeljackson/michael-jackson.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ae7aecdd7fb262d2f38c24a24ad167cf7ac45e05437b51e1df0fe37d22e75f2f
|
| 3 |
+
size 55229246
|
multi_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"models": [
|
| 3 |
+
"mickaeljackson", "macmiller", "biden", "bob", "arianagrande"
|
| 4 |
+
],
|
| 5 |
+
"examples": {
|
| 6 |
+
"vc": [],
|
| 7 |
+
"tts_vc": []
|
| 8 |
+
}
|
| 9 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
flask
|
| 4 |
+
flask-cors
|
| 5 |
+
torchaudio
|
| 6 |
+
fairseq==0.12.2
|
| 7 |
+
scipy==1.9.3
|
| 8 |
+
pyworld>=0.3.2
|
| 9 |
+
faiss-cpu==1.7.3
|
| 10 |
+
praat-parselmouth>=0.4.3
|
| 11 |
+
librosa==0.9.2
|
| 12 |
+
edge-tts
|
util.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import asyncio
|
| 3 |
+
from io import BytesIO
|
| 4 |
+
|
| 5 |
+
from fairseq import checkpoint_utils
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
import edge_tts
|
| 10 |
+
import librosa
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/config.py#L43-L55 # noqa
|
| 14 |
+
def has_mps() -> bool:
|
| 15 |
+
if sys.platform != "darwin":
|
| 16 |
+
return False
|
| 17 |
+
else:
|
| 18 |
+
if not getattr(torch, 'has_mps', False):
|
| 19 |
+
return False
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
torch.zeros(1).to(torch.device("mps"))
|
| 23 |
+
return True
|
| 24 |
+
except Exception:
|
| 25 |
+
return False
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def is_half(device: str) -> bool:
|
| 29 |
+
if not device.startswith('cuda'):
|
| 30 |
+
return False
|
| 31 |
+
else:
|
| 32 |
+
gpu_name = torch.cuda.get_device_name(
|
| 33 |
+
int(device.split(':')[-1])
|
| 34 |
+
).upper()
|
| 35 |
+
|
| 36 |
+
# ...regex?
|
| 37 |
+
if (
|
| 38 |
+
('16' in gpu_name and 'V100' not in gpu_name)
|
| 39 |
+
or 'P40' in gpu_name
|
| 40 |
+
or '1060' in gpu_name
|
| 41 |
+
or '1070' in gpu_name
|
| 42 |
+
or '1080' in gpu_name
|
| 43 |
+
):
|
| 44 |
+
return False
|
| 45 |
+
|
| 46 |
+
return True
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def load_hubert_model(device: str, model_path: str = 'hubert_base.pt'):
|
| 50 |
+
model = checkpoint_utils.load_model_ensemble_and_task(
|
| 51 |
+
[model_path]
|
| 52 |
+
)[0][0].to(device)
|
| 53 |
+
|
| 54 |
+
if is_half(device):
|
| 55 |
+
return model.half()
|
| 56 |
+
else:
|
| 57 |
+
return model.float()
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
async def call_edge_tts(speaker_name: str, text: str):
|
| 61 |
+
tts_com = edge_tts.Communicate(text, speaker_name)
|
| 62 |
+
tts_raw = b''
|
| 63 |
+
|
| 64 |
+
# Stream TTS audio to bytes
|
| 65 |
+
async for chunk in tts_com.stream():
|
| 66 |
+
if chunk['type'] == 'audio':
|
| 67 |
+
tts_raw += chunk['data']
|
| 68 |
+
|
| 69 |
+
# Convert mp3 stream to wav
|
| 70 |
+
ffmpeg_proc = await asyncio.create_subprocess_exec(
|
| 71 |
+
'ffmpeg',
|
| 72 |
+
'-f', 'mp3',
|
| 73 |
+
'-i', '-',
|
| 74 |
+
'-f', 'wav',
|
| 75 |
+
'-',
|
| 76 |
+
stdin=asyncio.subprocess.PIPE,
|
| 77 |
+
stdout=asyncio.subprocess.PIPE
|
| 78 |
+
)
|
| 79 |
+
(tts_wav, _) = await ffmpeg_proc.communicate(tts_raw)
|
| 80 |
+
|
| 81 |
+
return librosa.load(BytesIO(tts_wav))
|
vc_infer_pipeline.py
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np, parselmouth, torch, pdb
|
| 2 |
+
from time import time as ttime
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import scipy.signal as signal
|
| 5 |
+
import pyworld, os, traceback, faiss,librosa
|
| 6 |
+
from scipy import signal
|
| 7 |
+
from functools import lru_cache
|
| 8 |
+
|
| 9 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
| 10 |
+
|
| 11 |
+
input_audio_path2wav={}
|
| 12 |
+
@lru_cache
|
| 13 |
+
def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
|
| 14 |
+
audio=input_audio_path2wav[input_audio_path]
|
| 15 |
+
f0, t = pyworld.harvest(
|
| 16 |
+
audio,
|
| 17 |
+
fs=fs,
|
| 18 |
+
f0_ceil=f0max,
|
| 19 |
+
f0_floor=f0min,
|
| 20 |
+
frame_period=frame_period,
|
| 21 |
+
)
|
| 22 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
| 23 |
+
return f0
|
| 24 |
+
|
| 25 |
+
def change_rms(data1,sr1,data2,sr2,rate):#1是输入音频,2是输出音频,rate是2的占比
|
| 26 |
+
# print(data1.max(),data2.max())
|
| 27 |
+
rms1 = librosa.feature.rms(y=data1, frame_length=sr1//2*2, hop_length=sr1//2)#每半秒一个点
|
| 28 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2//2*2, hop_length=sr2//2)
|
| 29 |
+
rms1=torch.from_numpy(rms1)
|
| 30 |
+
rms1=F.interpolate(rms1.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
| 31 |
+
rms2=torch.from_numpy(rms2)
|
| 32 |
+
rms2=F.interpolate(rms2.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
|
| 33 |
+
rms2=torch.max(rms2,torch.zeros_like(rms2)+1e-6)
|
| 34 |
+
data2*=(torch.pow(rms1,torch.tensor(1-rate))*torch.pow(rms2,torch.tensor(rate-1))).numpy()
|
| 35 |
+
return data2
|
| 36 |
+
|
| 37 |
+
class VC(object):
|
| 38 |
+
def __init__(self, tgt_sr, config):
|
| 39 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
| 40 |
+
config.x_pad,
|
| 41 |
+
config.x_query,
|
| 42 |
+
config.x_center,
|
| 43 |
+
config.x_max,
|
| 44 |
+
config.is_half,
|
| 45 |
+
)
|
| 46 |
+
self.sr = 16000 # hubert输入采样率
|
| 47 |
+
self.window = 160 # 每帧点数
|
| 48 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
| 49 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
| 50 |
+
self.t_pad2 = self.t_pad * 2
|
| 51 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
| 52 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
| 53 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
| 54 |
+
self.device = config.device
|
| 55 |
+
|
| 56 |
+
def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None):
|
| 57 |
+
global input_audio_path2wav
|
| 58 |
+
time_step = self.window / self.sr * 1000
|
| 59 |
+
f0_min = 50
|
| 60 |
+
f0_max = 1100
|
| 61 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
| 62 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
| 63 |
+
if f0_method == "pm":
|
| 64 |
+
f0 = (
|
| 65 |
+
parselmouth.Sound(x, self.sr)
|
| 66 |
+
.to_pitch_ac(
|
| 67 |
+
time_step=time_step / 1000,
|
| 68 |
+
voicing_threshold=0.6,
|
| 69 |
+
pitch_floor=f0_min,
|
| 70 |
+
pitch_ceiling=f0_max,
|
| 71 |
+
)
|
| 72 |
+
.selected_array["frequency"]
|
| 73 |
+
)
|
| 74 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
| 75 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
| 76 |
+
f0 = np.pad(
|
| 77 |
+
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
| 78 |
+
)
|
| 79 |
+
elif f0_method == "harvest":
|
| 80 |
+
input_audio_path2wav[input_audio_path]=x.astype(np.double)
|
| 81 |
+
f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10)
|
| 82 |
+
if(filter_radius>2):
|
| 83 |
+
f0 = signal.medfilt(f0, 3)
|
| 84 |
+
f0 *= pow(2, f0_up_key / 12)
|
| 85 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 86 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
| 87 |
+
if inp_f0 is not None:
|
| 88 |
+
delta_t = np.round(
|
| 89 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
| 90 |
+
).astype("int16")
|
| 91 |
+
replace_f0 = np.interp(
|
| 92 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
| 93 |
+
)
|
| 94 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
| 95 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
| 96 |
+
:shape
|
| 97 |
+
]
|
| 98 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
| 99 |
+
f0bak = f0.copy()
|
| 100 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
| 101 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
| 102 |
+
f0_mel_max - f0_mel_min
|
| 103 |
+
) + 1
|
| 104 |
+
f0_mel[f0_mel <= 1] = 1
|
| 105 |
+
f0_mel[f0_mel > 255] = 255
|
| 106 |
+
f0_coarse = np.rint(f0_mel).astype(int)
|
| 107 |
+
return f0_coarse, f0bak # 1-0
|
| 108 |
+
|
| 109 |
+
def vc(
|
| 110 |
+
self,
|
| 111 |
+
model,
|
| 112 |
+
net_g,
|
| 113 |
+
sid,
|
| 114 |
+
audio0,
|
| 115 |
+
pitch,
|
| 116 |
+
pitchf,
|
| 117 |
+
times,
|
| 118 |
+
index,
|
| 119 |
+
big_npy,
|
| 120 |
+
index_rate,
|
| 121 |
+
version,
|
| 122 |
+
): # ,file_index,file_big_npy
|
| 123 |
+
feats = torch.from_numpy(audio0)
|
| 124 |
+
if self.is_half:
|
| 125 |
+
feats = feats.half()
|
| 126 |
+
else:
|
| 127 |
+
feats = feats.float()
|
| 128 |
+
if feats.dim() == 2: # double channels
|
| 129 |
+
feats = feats.mean(-1)
|
| 130 |
+
assert feats.dim() == 1, feats.dim()
|
| 131 |
+
feats = feats.view(1, -1)
|
| 132 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 133 |
+
|
| 134 |
+
inputs = {
|
| 135 |
+
"source": feats.to(self.device),
|
| 136 |
+
"padding_mask": padding_mask,
|
| 137 |
+
"output_layer": 9 if version == "v1" else 12,
|
| 138 |
+
}
|
| 139 |
+
t0 = ttime()
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
logits = model.extract_features(**inputs)
|
| 142 |
+
feats = model.final_proj(logits[0])if version=="v1"else logits[0]
|
| 143 |
+
|
| 144 |
+
if (
|
| 145 |
+
isinstance(index, type(None)) == False
|
| 146 |
+
and isinstance(big_npy, type(None)) == False
|
| 147 |
+
and index_rate != 0
|
| 148 |
+
):
|
| 149 |
+
npy = feats[0].cpu().numpy()
|
| 150 |
+
if self.is_half:
|
| 151 |
+
npy = npy.astype("float32")
|
| 152 |
+
|
| 153 |
+
# _, I = index.search(npy, 1)
|
| 154 |
+
# npy = big_npy[I.squeeze()]
|
| 155 |
+
|
| 156 |
+
score, ix = index.search(npy, k=8)
|
| 157 |
+
weight = np.square(1 / score)
|
| 158 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
| 159 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
| 160 |
+
|
| 161 |
+
if self.is_half:
|
| 162 |
+
npy = npy.astype("float16")
|
| 163 |
+
feats = (
|
| 164 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
| 165 |
+
+ (1 - index_rate) * feats
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
| 169 |
+
t1 = ttime()
|
| 170 |
+
p_len = audio0.shape[0] // self.window
|
| 171 |
+
if feats.shape[1] < p_len:
|
| 172 |
+
p_len = feats.shape[1]
|
| 173 |
+
if pitch != None and pitchf != None:
|
| 174 |
+
pitch = pitch[:, :p_len]
|
| 175 |
+
pitchf = pitchf[:, :p_len]
|
| 176 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
| 177 |
+
with torch.no_grad():
|
| 178 |
+
if pitch != None and pitchf != None:
|
| 179 |
+
audio1 = (
|
| 180 |
+
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
|
| 181 |
+
.data.cpu()
|
| 182 |
+
.float()
|
| 183 |
+
.numpy()
|
| 184 |
+
)
|
| 185 |
+
else:
|
| 186 |
+
audio1 = (
|
| 187 |
+
(net_g.infer(feats, p_len, sid)[0][0, 0])
|
| 188 |
+
.data.cpu()
|
| 189 |
+
.float()
|
| 190 |
+
.numpy()
|
| 191 |
+
)
|
| 192 |
+
del feats, p_len, padding_mask
|
| 193 |
+
if torch.cuda.is_available():
|
| 194 |
+
torch.cuda.empty_cache()
|
| 195 |
+
t2 = ttime()
|
| 196 |
+
times[0] += t1 - t0
|
| 197 |
+
times[2] += t2 - t1
|
| 198 |
+
return audio1
|
| 199 |
+
|
| 200 |
+
def pipeline(
|
| 201 |
+
self,
|
| 202 |
+
model,
|
| 203 |
+
net_g,
|
| 204 |
+
sid,
|
| 205 |
+
audio,
|
| 206 |
+
input_audio_path,
|
| 207 |
+
times,
|
| 208 |
+
f0_up_key,
|
| 209 |
+
f0_method,
|
| 210 |
+
file_index,
|
| 211 |
+
# file_big_npy,
|
| 212 |
+
index_rate,
|
| 213 |
+
if_f0,
|
| 214 |
+
filter_radius,
|
| 215 |
+
tgt_sr,
|
| 216 |
+
resample_sr,
|
| 217 |
+
rms_mix_rate,
|
| 218 |
+
version,
|
| 219 |
+
f0_file=None,
|
| 220 |
+
):
|
| 221 |
+
if (
|
| 222 |
+
file_index != ""
|
| 223 |
+
# and file_big_npy != ""
|
| 224 |
+
# and os.path.exists(file_big_npy) == True
|
| 225 |
+
and os.path.exists(file_index) == True
|
| 226 |
+
and index_rate != 0
|
| 227 |
+
):
|
| 228 |
+
try:
|
| 229 |
+
index = faiss.read_index(file_index)
|
| 230 |
+
# big_npy = np.load(file_big_npy)
|
| 231 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 232 |
+
except:
|
| 233 |
+
traceback.print_exc()
|
| 234 |
+
index = big_npy = None
|
| 235 |
+
else:
|
| 236 |
+
index = big_npy = None
|
| 237 |
+
audio = signal.filtfilt(bh, ah, audio)
|
| 238 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
| 239 |
+
opt_ts = []
|
| 240 |
+
if audio_pad.shape[0] > self.t_max:
|
| 241 |
+
audio_sum = np.zeros_like(audio)
|
| 242 |
+
for i in range(self.window):
|
| 243 |
+
audio_sum += audio_pad[i : i - self.window]
|
| 244 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
| 245 |
+
opt_ts.append(
|
| 246 |
+
t
|
| 247 |
+
- self.t_query
|
| 248 |
+
+ np.where(
|
| 249 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
| 250 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
| 251 |
+
)[0][0]
|
| 252 |
+
)
|
| 253 |
+
s = 0
|
| 254 |
+
audio_opt = []
|
| 255 |
+
t = None
|
| 256 |
+
t1 = ttime()
|
| 257 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
| 258 |
+
p_len = audio_pad.shape[0] // self.window
|
| 259 |
+
inp_f0 = None
|
| 260 |
+
if hasattr(f0_file, "name") == True:
|
| 261 |
+
try:
|
| 262 |
+
with open(f0_file.name, "r") as f:
|
| 263 |
+
lines = f.read().strip("\n").split("\n")
|
| 264 |
+
inp_f0 = []
|
| 265 |
+
for line in lines:
|
| 266 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
| 267 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
| 268 |
+
except:
|
| 269 |
+
traceback.print_exc()
|
| 270 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
| 271 |
+
pitch, pitchf = None, None
|
| 272 |
+
if if_f0 == 1:
|
| 273 |
+
pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0)
|
| 274 |
+
pitch = pitch[:p_len]
|
| 275 |
+
pitchf = pitchf[:p_len]
|
| 276 |
+
if self.device == "mps":
|
| 277 |
+
pitchf = pitchf.astype(np.float32)
|
| 278 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
| 279 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
| 280 |
+
t2 = ttime()
|
| 281 |
+
times[1] += t2 - t1
|
| 282 |
+
for t in opt_ts:
|
| 283 |
+
t = t // self.window * self.window
|
| 284 |
+
if if_f0 == 1:
|
| 285 |
+
audio_opt.append(
|
| 286 |
+
self.vc(
|
| 287 |
+
model,
|
| 288 |
+
net_g,
|
| 289 |
+
sid,
|
| 290 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 291 |
+
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 292 |
+
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
| 293 |
+
times,
|
| 294 |
+
index,
|
| 295 |
+
big_npy,
|
| 296 |
+
index_rate,
|
| 297 |
+
version,
|
| 298 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 299 |
+
)
|
| 300 |
+
else:
|
| 301 |
+
audio_opt.append(
|
| 302 |
+
self.vc(
|
| 303 |
+
model,
|
| 304 |
+
net_g,
|
| 305 |
+
sid,
|
| 306 |
+
audio_pad[s : t + self.t_pad2 + self.window],
|
| 307 |
+
None,
|
| 308 |
+
None,
|
| 309 |
+
times,
|
| 310 |
+
index,
|
| 311 |
+
big_npy,
|
| 312 |
+
index_rate,
|
| 313 |
+
version,
|
| 314 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 315 |
+
)
|
| 316 |
+
s = t
|
| 317 |
+
if if_f0 == 1:
|
| 318 |
+
audio_opt.append(
|
| 319 |
+
self.vc(
|
| 320 |
+
model,
|
| 321 |
+
net_g,
|
| 322 |
+
sid,
|
| 323 |
+
audio_pad[t:],
|
| 324 |
+
pitch[:, t // self.window :] if t is not None else pitch,
|
| 325 |
+
pitchf[:, t // self.window :] if t is not None else pitchf,
|
| 326 |
+
times,
|
| 327 |
+
index,
|
| 328 |
+
big_npy,
|
| 329 |
+
index_rate,
|
| 330 |
+
version,
|
| 331 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 332 |
+
)
|
| 333 |
+
else:
|
| 334 |
+
audio_opt.append(
|
| 335 |
+
self.vc(
|
| 336 |
+
model,
|
| 337 |
+
net_g,
|
| 338 |
+
sid,
|
| 339 |
+
audio_pad[t:],
|
| 340 |
+
None,
|
| 341 |
+
None,
|
| 342 |
+
times,
|
| 343 |
+
index,
|
| 344 |
+
big_npy,
|
| 345 |
+
index_rate,
|
| 346 |
+
version,
|
| 347 |
+
)[self.t_pad_tgt : -self.t_pad_tgt]
|
| 348 |
+
)
|
| 349 |
+
audio_opt = np.concatenate(audio_opt)
|
| 350 |
+
if(rms_mix_rate!=1):
|
| 351 |
+
audio_opt=change_rms(audio,16000,audio_opt,tgt_sr,rms_mix_rate)
|
| 352 |
+
if(resample_sr>=16000 and tgt_sr!=resample_sr):
|
| 353 |
+
audio_opt = librosa.resample(
|
| 354 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
| 355 |
+
)
|
| 356 |
+
audio_max=np.abs(audio_opt).max()/0.99
|
| 357 |
+
max_int16=32768
|
| 358 |
+
if(audio_max>1):max_int16/=audio_max
|
| 359 |
+
audio_opt=(audio_opt * max_int16).astype(np.int16)
|
| 360 |
+
del pitch, pitchf, sid
|
| 361 |
+
if torch.cuda.is_available():
|
| 362 |
+
torch.cuda.empty_cache()
|
| 363 |
+
return audio_opt
|