VoiceChangers / app_multi.py
kevinwang676's picture
Update app_multi.py
950e6ba verified
from typing import Union
from argparse import ArgumentParser
from pathlib import Path
import subprocess
import librosa
import os
import time
import random
import yt_dlp
from search import get_youtube, download_random
import soundfile
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from moviepy.editor import *
from moviepy.video.io.VideoFileClip import VideoFileClip
import asyncio
import json
import hashlib
from os import path, getenv
from pydub import AudioSegment
import gradio as gr
import torch
import edge_tts
from datetime import datetime
from scipy.io.wavfile import write
import config
import util
from infer_pack.models import (
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono
)
from vc_infer_pipeline import VC
# music search
def auto_search(name):
save_music_path = '/tmp/downloaded'
if not os.path.exists(save_music_path):
os.makedirs(save_music_path)
config = {'logfilepath': 'musicdl.log', save_music_path: save_music_path, 'search_size_per_source': 5,
'proxies': {}}
save_path = os.path.join(save_music_path, name + '.mp3')
# youtube
get_youtube(name, os.path.join(save_music_path, name))
# task1 = threading.Thread(
# target=get_youtube,
# args=(name, os.path.join(save_music_path, name))
# )
# task1.start()
# task2 = threading.Thread(
# target=download_random,
# args=(name, config, save_path)
# )
# task2.start()
# task1.join(timeout=20)
# task2.join(timeout=10)
if not os.path.exists(save_path):
return "Not Found", None
signal, sampling_rate = soundfile.read(save_path, dtype=np.int16)
# signal, sampling_rate = open_audio(save_path)
return (sampling_rate, signal)
# Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21 # noqa
in_hf_space = getenv('SYSTEM') == 'spaces'
high_quality = True
# Argument parsing
arg_parser = ArgumentParser()
arg_parser.add_argument(
'--hubert',
default=getenv('RVC_HUBERT', 'hubert_base.pt'),
help='path to hubert base model (default: hubert_base.pt)'
)
arg_parser.add_argument(
'--config',
default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
help='path to config file (default: multi_config.json)'
)
arg_parser.add_argument(
'--api',
action='store_true',
help='enable api endpoint'
)
arg_parser.add_argument(
'--cache-examples',
action='store_true',
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa
)
args = arg_parser.parse_args()
app_css = '''
#model_info img {
max-width: 100px;
max-height: 100px;
float: right;
}
#model_info p {
margin: unset;
}
'''
app = gr.Blocks(
theme=gr.themes.Soft(primary_hue="orange", secondary_hue="slate"),
css=app_css,
analytics_enabled=False
)
# Load hubert model
hubert_model = util.load_hubert_model(config.device, args.hubert)
hubert_model.eval()
# Load models
multi_cfg = json.load(open(args.config, 'r'))
loaded_models = []
for model_name in multi_cfg.get('models'):
print(f'Loading model: {model_name}')
# Load model info
model_info = json.load(
open(path.join('model', model_name, 'config.json'), 'r')
)
# Load RVC checkpoint
cpt = torch.load(
path.join('model', model_name, model_info['model']),
map_location='cpu'
)
tgt_sr = cpt['config'][-1]
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk
if_f0 = cpt.get('f0', 1)
net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono]
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt['config'],
is_half=util.is_half(config.device)
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])
del net_g.enc_q
# According to original code, this thing seems necessary.
print(net_g.load_state_dict(cpt['weight'], strict=False))
net_g.eval().to(config.device)
net_g = net_g.half() if util.is_half(config.device) else net_g.float()
vc = VC(tgt_sr, config)
loaded_models.append(dict(
name=model_name,
metadata=model_info,
vc=vc,
net_g=net_g,
if_f0=if_f0,
target_sr=tgt_sr
))
print(f'Models loaded: {len(loaded_models)}')
# Edge TTS speakers
tts_speakers_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) # noqa
# Make MV
def make_bars_image(height_values, index, new_height):
# Define the size of the image
width = 512
height = new_height
# Create a new image with a transparent background
image = Image.new('RGBA', (width, height), color=(0, 0, 0, 0))
# Get the image drawing context
draw = ImageDraw.Draw(image)
# Define the rectangle width and spacing
rect_width = 2
spacing = 2
# Define the list of height values for the rectangles
#height_values = [20, 40, 60, 80, 100, 80, 60, 40]
num_bars = len(height_values)
# Calculate the total width of the rectangles and the spacing
total_width = num_bars * rect_width + (num_bars - 1) * spacing
# Calculate the starting position for the first rectangle
start_x = int((width - total_width) / 2)
# Define the buffer size
buffer_size = 80
# Draw the rectangles from left to right
x = start_x
for i, height in enumerate(height_values):
# Define the rectangle coordinates
y0 = buffer_size
y1 = height + buffer_size
x0 = x
x1 = x + rect_width
# Draw the rectangle
draw.rectangle([x0, y0, x1, y1], fill='white')
# Move to the next rectangle position
if i < num_bars - 1:
x += rect_width + spacing
# Rotate the image by 180 degrees
image = image.rotate(180)
# Mirror the image
image = image.transpose(Image.FLIP_LEFT_RIGHT)
# Save the image
image.save('audio_bars_'+ str(index) + '.png')
return 'audio_bars_'+ str(index) + '.png'
def db_to_height(db_value):
# Scale the dB value to a range between 0 and 1
scaled_value = (db_value + 80) / 80
# Convert the scaled value to a height between 0 and 100
height = scaled_value * 50
return height
def infer(title, audio_in, image_in):
# Load the audio file
audio_path = audio_in
audio_data, sr = librosa.load(audio_path)
# Get the duration in seconds
duration = librosa.get_duration(y=audio_data, sr=sr)
# Extract the audio data for the desired time
start_time = 0 # start time in seconds
end_time = duration # end time in seconds
start_index = int(start_time * sr)
end_index = int(end_time * sr)
audio_data = audio_data[start_index:end_index]
# Compute the short-time Fourier transform
hop_length = 512
stft = librosa.stft(audio_data, hop_length=hop_length)
spectrogram = librosa.amplitude_to_db(np.abs(stft), ref=np.max)
# Get the frequency values
freqs = librosa.fft_frequencies(sr=sr, n_fft=stft.shape[0])
# Select the indices of the frequency values that correspond to the desired frequencies
n_freqs = 114
freq_indices = np.linspace(0, len(freqs) - 1, n_freqs, dtype=int)
# Extract the dB values for the desired frequencies
db_values = []
for i in range(spectrogram.shape[1]):
db_values.append(list(zip(freqs[freq_indices], spectrogram[freq_indices, i])))
# Print the dB values for the first time frame
print(db_values[0])
proportional_values = []
for frame in db_values:
proportional_frame = [db_to_height(db) for f, db in frame]
proportional_values.append(proportional_frame)
print(proportional_values[0])
print("AUDIO CHUNK: " + str(len(proportional_values)))
# Open the background image
background_image = Image.open(image_in)
# Resize the image while keeping its aspect ratio
bg_width, bg_height = background_image.size
aspect_ratio = bg_width / bg_height
new_width = 512
new_height = int(new_width / aspect_ratio)
resized_bg = background_image.resize((new_width, new_height))
# Apply black cache for better visibility of the white text
bg_cache = Image.open('black_cache.png')
resized_bg.paste(bg_cache, (0, resized_bg.height - bg_cache.height), mask=bg_cache)
# Create a new ImageDraw object
draw = ImageDraw.Draw(resized_bg)
# Define the text to be added
text = title
font = ImageFont.truetype("NotoSansSC-Regular.otf", 16)
text_color = (255, 255, 255) # white color
# Calculate the position of the text
text_width, text_height = draw.textsize(text, font=font)
x = 30
y = new_height - 70
# Draw the text on the image
draw.text((x, y), text, fill=text_color, font=font)
# Save the resized image
resized_bg.save('resized_background.jpg')
generated_frames = []
for i, frame in enumerate(proportional_values):
bars_img = make_bars_image(frame, i, new_height)
bars_img = Image.open(bars_img)
# Paste the audio bars image on top of the background image
fresh_bg = Image.open('resized_background.jpg')
fresh_bg.paste(bars_img, (0, 0), mask=bars_img)
# Save the image
fresh_bg.save('audio_bars_with_bg' + str(i) + '.jpg')
generated_frames.append('audio_bars_with_bg' + str(i) + '.jpg')
print(generated_frames)
# Create a video clip from the images
clip = ImageSequenceClip(generated_frames, fps=len(generated_frames)/(end_time-start_time))
audio_clip = AudioFileClip(audio_in)
clip = clip.set_audio(audio_clip)
# Set the output codec
codec = 'libx264'
audio_codec = 'aac'
# Save the video to a file
clip.write_videofile("my_video.mp4", codec=codec, audio_codec=audio_codec)
retimed_clip = VideoFileClip("my_video.mp4")
# Set the desired frame rate
new_fps = 25
# Create a new clip with the new frame rate
new_clip = retimed_clip.set_fps(new_fps)
# Save the new clip as a new video file
new_clip.write_videofile("my_video_retimed.mp4", codec=codec, audio_codec=audio_codec)
return "my_video_retimed.mp4"
# mix vocal and non-vocal
def mix(audio1, audio2):
sound1 = AudioSegment.from_file(audio1)
sound2 = AudioSegment.from_file(audio2)
length = len(sound1)
mixed = sound1[:length].overlay(sound2)
mixed.export("song.wav", format="wav")
return "song.wav"
import requests
import yt_dlp
headers = {
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4302.0 Safari/537.36"
}
import re
pattern = r'//www\.bilibili\.com/video[^"]*'
def find_first_appearance_with_neighborhood(text, pattern):
match = re.search(pattern, text)
if match:
return match.group()
else:
return None
def search_bilibili(keyword):
req = requests.get("https://search.bilibili.com/all?keyword={}&duration=1&tids=3&page=1".format(keyword), headers=headers).text
video_link = "https:" + find_first_appearance_with_neighborhood(req, pattern)
return video_link
# Bilibili
def youtube_downloader(
song_name,
start_time,
end_time,
is_full_song,
output_filename="track.wav",
num_attempts=5,
url_base="",
quiet=False,
force=True,
):
video_identifier = search_bilibili(song_name)
if is_full_song:
ydl_opts = {
'noplaylist': True,
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
"outtmpl": 'dl_audio/youtube_audio',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([video_identifier])
audio_path = "dl_audio/youtube_audio.wav"
return audio_path
else:
output_path = Path(output_filename)
if output_path.exists():
if not force:
return output_path
else:
output_path.unlink()
quiet = "--quiet --no-warnings" if quiet else ""
command = f"""
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
""".strip()
attempts = 0
while True:
try:
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return None
else:
break
if output_path.exists():
return output_path
else:
return None
def audio_separated(audio_input, progress=gr.Progress()):
# start progress
progress(progress=0, desc="Starting...")
time.sleep(0.1)
# check file input
if audio_input is None:
# show progress
for i in progress.tqdm(range(100), desc="Please wait..."):
time.sleep(0.01)
return (None, None, 'Please input audio.')
# create filename
filename = str(random.randint(10000,99999))+datetime.now().strftime("%d%m%Y%H%M%S")
# progress
progress(progress=0.10, desc="Please wait...")
# make dir output
os.makedirs("output", exist_ok=True)
# progress
progress(progress=0.20, desc="Please wait...")
# write
if high_quality:
write(filename+".wav", audio_input[0], audio_input[1])
else:
write(filename+".mp3", audio_input[0], audio_input[1])
# progress
progress(progress=0.50, desc="Please wait...")
# demucs process
if high_quality:
command_demucs = "python3 -m demucs --two-stems=vocals -d cpu "+filename+".wav -o output"
else:
command_demucs = "python3 -m demucs --two-stems=vocals --mp3 --mp3-bitrate 128 -d cpu "+filename+".mp3 -o output"
os.system(command_demucs)
# progress
progress(progress=0.70, desc="Please wait...")
# remove file audio
if high_quality:
command_delete = "rm -v ./"+filename+".wav"
else:
command_delete = "rm -v ./"+filename+".mp3"
os.system(command_delete)
# progress
progress(progress=0.80, desc="Please wait...")
# progress
for i in progress.tqdm(range(80,100), desc="Please wait..."):
time.sleep(0.1)
if high_quality:
return "./output/htdemucs/"+filename+"/vocals.wav","./output/htdemucs/"+filename+"/no_vocals.wav","Successfully..."
else:
return "./output/htdemucs/"+filename+"/vocals.mp3","./output/htdemucs/"+filename+"/no_vocals.mp3","Successfully..."
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa
def vc_func(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
if input_audio is None:
return (None, 'Please provide input audio.')
if model_index is None:
return (None, 'Please select a model.')
model = loaded_models[model_index]
# Reference: so-vits
(audio_samp, audio_npy) = input_audio
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
# Can be change well, we will see
if (audio_npy.shape[0] / audio_samp) > 600 and in_hf_space:
return (None, 'Input audio is longer than 600 secs.')
# Bloody hell: https://stackoverflow.com/questions/26921836/
if audio_npy.dtype != np.float32: # :thonk:
audio_npy = (
audio_npy / np.iinfo(audio_npy.dtype).max
).astype(np.float32)
if len(audio_npy.shape) > 1:
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))
if audio_samp != 16000:
audio_npy = librosa.resample(
audio_npy,
orig_sr=audio_samp,
target_sr=16000
)
pitch_int = int(pitch_adjust)
resample = (
0 if resample_option == 'Disable resampling'
else int(resample_option)
)
times = [0, 0, 0]
checksum = hashlib.sha512()
checksum.update(audio_npy.tobytes())
output_audio = model['vc'].pipeline(
hubert_model,
model['net_g'],
model['metadata'].get('speaker_id', 0),
audio_npy,
checksum.hexdigest(),
times,
pitch_int,
f0_method,
path.join('model', model['name'], model['metadata']['feat_index']),
feat_ratio,
model['if_f0'],
filter_radius,
model['target_sr'],
resample,
rms_mix_rate,
'v2'
)
out_sr = (
resample if resample >= 16000 and model['target_sr'] != resample
else model['target_sr']
)
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
return ((out_sr, output_audio), 'Success')
async def edge_tts_vc_func(
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
if input_text is None:
return (None, 'Please provide TTS text.')
if tts_speaker is None:
return (None, 'Please select TTS speaker.')
if model_index is None:
return (None, 'Please select a model.')
speaker = tts_speakers_list[tts_speaker]['ShortName']
(tts_np, tts_sr) = await util.call_edge_tts(speaker, input_text)
return vc_func(
(tts_sr, tts_np),
model_index,
pitch_adjust,
f0_method,
feat_ratio,
filter_radius,
rms_mix_rate,
resample_option
)
def update_model_info(model_index):
if model_index is None:
return str(
'### Model info\n'
'Please select a model from dropdown above.'
)
model = loaded_models[model_index]
model_icon = model['metadata'].get('icon', '')
return str(
'### Model info\n'
'![model icon]({icon})'
'**{name}**\n\n'
'Author: {author}\n\n'
'Source: {source}\n\n'
'{note}'
).format(
name=model['metadata'].get('name'),
author=model['metadata'].get('author', 'Anonymous'),
source=model['metadata'].get('source', 'Unknown'),
note=model['metadata'].get('note', ''),
icon=(
model_icon
if model_icon.startswith(('http://', 'https://'))
else '/file/model/%s/%s' % (model['name'], model_icon)
)
)
def _example_vc(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
(audio, message) = vc_func(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
)
return (
audio,
message,
update_model_info(model_index)
)
async def _example_edge_tts(
input_text, model_index, tts_speaker, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
(audio, message) = await edge_tts_vc_func(
input_text, model_index, tts_speaker, pitch_adjust, f0_method,
feat_ratio, filter_radius, rms_mix_rate, resample_option
)
return (
audio,
message,
update_model_info(model_index)
)
with app:
gr.HTML("<center>"
"<h1>🥳🎶🎡 - AI歌手+RVC最新算法</h1>"
"</center>")
gr.Markdown("### <center>🌊 - 轻松上传音乐,一键生成歌曲,AI歌手准备就绪;Powered by [RVC-Project](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)</center>")
gr.Markdown("### <center>更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
with gr.Tab("🤗 - 轻松提取音乐"):
with gr.Row():
with gr.Column():
ydl_url_input = gr.Textbox(label="通过歌曲名搜索", placeholder = "小幸运")
with gr.Row():
start = gr.Number(value=0, label="起始时间 (秒)")
end = gr.Number(value=15, label="结束时间 (秒)")
check_full = gr.Checkbox(label="是否上传整首歌曲", info="若勾选则不需要填写起止时间", value=True)
search_name = gr.Dropdown(label="通过歌曲名搜索", info="选一首您喜欢的歌曲吧", visible=False, choices=["周杰伦晴天","周杰伦兰亭序","周杰伦七里香","周杰伦花海","周杰伦反方向的钟","周杰伦一路向北","周杰伦稻香","周杰伦明明就","周杰伦爱在西元前","孙燕姿逆光","陈奕迅富士山下","许嵩有何不可","薛之谦其实","邓紫棋光年之外","李荣浩年少有为"])
vc_search = gr.Button("用歌曲名来搜索吧", visible=False)
ydl_url_submit = gr.Button("提取声音文件吧", variant="primary")
as_audio_submit = gr.Button("去除背景音吧", variant="primary")
with gr.Column():
ydl_audio_output = gr.Audio(label="歌曲原声")
as_audio_input = ydl_audio_output
as_audio_vocals = gr.Audio(label="歌曲人声部分")
as_audio_no_vocals = gr.Audio(label="歌曲伴奏部分", type="filepath")
as_audio_message = gr.Textbox(label="Message", visible=False)
vc_search.click(auto_search, [search_name], [ydl_audio_output])
ydl_url_submit.click(fn=youtube_downloader, inputs=[ydl_url_input, start, end, check_full], outputs=[ydl_audio_output])
as_audio_submit.click(fn=audio_separated, inputs=[as_audio_input], outputs=[as_audio_vocals, as_audio_no_vocals, as_audio_message], show_progress=True, queue=True)
with gr.Row():
with gr.Tab('🎶 - 歌声转换'):
with gr.Row():
with gr.Column():
input_audio = as_audio_vocals
vc_convert_btn = gr.Button('进行歌声转换吧!', variant='primary')
full_song = gr.Button("加入歌曲伴奏吧!", variant="primary")
new_song = gr.Audio(label="AI歌手+伴奏", type="filepath")
pitch_adjust = gr.Slider(
label='变调(默认为0;+2为升高两个key)',
minimum=-12,
maximum=12,
step=1,
value=0
)
f0_method = gr.Radio(
label='人声提取方法(pm时间更短;rmvpe效果更好)',
choices=['pm', 'rmvpe'],
value='pm',
interactive=True
)
with gr.Accordion('更多设置', open=False):
feat_ratio = gr.Slider(
label='Feature ratio',
minimum=0,
maximum=1,
step=0.1,
value=0.6,
visible=False
)
filter_radius = gr.Slider(
label='Filter radius',
minimum=0,
maximum=7,
step=1,
value=3,
visible=False
)
rms_mix_rate = gr.Slider(
label='Volume envelope mix rate',
minimum=0,
maximum=1,
step=0.1,
value=1,
visible=False
)
resample_rate = gr.Dropdown(
[
'Disable resampling',
'16000',
'22050',
'44100',
'48000'
],
label='是否更新采样率(默认为否)',
value='Disable resampling'
)
with gr.Column():
# Model select
model_index = gr.Dropdown(
[
'%s - %s' % (
m['metadata'].get('source', 'Unknown'),
m['metadata'].get('name')
)
for m in loaded_models
],
label='请选择您的AI歌手(必选)',
type='index'
)
# Model info
with gr.Box():
model_info = gr.Markdown(
'### AI歌手信息\n'
'Please select a model from dropdown above.',
elem_id='model_info'
)
output_audio = gr.Audio(label='AI歌手(无伴奏)', type="filepath")
output_msg = gr.Textbox(label='Output message', visible=False)
vc_convert_btn.click(
vc_func,
[
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_rate
],
[output_audio, output_msg],
api_name='audio_conversion'
)
full_song.click(fn=mix, inputs=[output_audio, as_audio_no_vocals], outputs=[new_song])
model_index.change(
update_model_info,
inputs=[model_index],
outputs=[model_info],
show_progress=False,
queue=False
)
with gr.Tab("📺 - 音乐视频"):
with gr.Row():
with gr.Column():
inp1 = gr.Textbox(label="为视频配上精彩的文案吧(选填)")
inp2 = new_song
inp3 = gr.Image(source='upload', type='filepath', label="上传一张背景图片吧")
btn = gr.Button("生成您的专属音乐视频吧", variant="primary")
with gr.Column():
out1 = gr.Video(label='您的专属音乐视频').style(width=512)
btn.click(fn=infer, inputs=[inp1, inp2, inp3], outputs=[out1])
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>")
gr.Markdown("<center>🧸 - 如何使用此程序:填写视频网址和视频起止时间后,依次点击“提取声音文件吧”、“去除背景音吧”、“进行歌声转换吧!”、“加入歌曲伴奏吧!”四个按键即可。</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.queue(
concurrency_count=1,
max_size=20,
api_open=args.api
).launch(show_error=True)